R T

-

i
i
I

I ma e .

i

- RIS

by g v} i

1
b
ﬁ-Lm,‘c,‘" i e
- i
B v e e e

G ey
&

4§ W10

. FINAL REPORT -

S

R V4 LA,

A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL

. . ———
o e P T

AND CONICAL SHELLS SUBJECTED TO VARIOUS

TYPES AND COMBINATIONS OF LOADS

o NekI248H0 Ne4l2uguy
coal (ol A 555FL LI

Submitted to
K : George C; Marshall Space Flight Center

National Aeronautics and Space Administration

b
m
g
b3 | .
O | .
— NASA Contract NAS 8- 5168
v 1))
':g October 15, 1962 - January lh 1964
r.(-r)‘ Project Directors: Carl C. Steyer and William K. Rey>

UNIVERSITY OF ALABAMA BUREAU OF ENGINEERING RESEARCH
and

o UNIVERISTY /OF ALABAMA RESEARCH INSTITUTE
-/ , - /
Y «frwit_a_ff' < 4 }”' 1y L ///%/

Ma y,' 196l - v

4



- e B B ) B R S A B T R EE S B B EE e W

-

FINAL REPORT

A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL
AND CONICAL SHELLS SUBJECTED TO VARIOUS

TYPES AND COMBINATIONS OF LOADS

Submitted to
George C. Marshall Space Flight Center

National Aeronautics and Space Administration

NASA Contract NAS 8-5168
October 15, 1962 - January 1L, 1964

Project Directors: Carl C. Steyer and William K. Rey

UNIVERSITY OF ALABAMA BUREAU OF ENGINEERING RESEARCH
and

UNIVERISTY OF ALABAMA RESEARCH INSTITUTE

May, 196k



FINAL REPORT

A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL
AND CONICAL SHELLS SUBJECTED TO VARIOUS

TYPES AND COMBINATIONS OF LOADS

Introduction

Preliminary theoretical and experimental studies of the strength
and stability of cylindrical and conical shells were performed by
the University of Alabama under the terms of Contract Number
DA-01-009-0RD-33L with the Redstone Arsenal and Contract Number
DA -01-009-0RD-866 with the U.S. Army Ordnance District, Birmingham,
Alabama. As a result of these preliminary studies and discussions
with personnel of the Strength Analysis Branch of the Propulsion and
Vehicle Engineering Division at the George C. Marshall Space Flight
Center, a long range research program was formulated for the purpose
of providing analytical procedures, design data and digital computer
programs for the analysis and design of cylindrical and conical
shells that could be included in a space vehicle structures handbook.
The first research effort designed to achieve this purpose was accom-
plished under the terms of contract NAS 8-5012 between the George
C. Marshall Space Flight Center and the University of Alabama during
the period from May 28, 1962 to October 15, 1962. The results of
this initial effort under the terms of contract NAS 8-5012 were sub-
mitted to the GCMSFC as a University of Alabama Bureau of Engineering
Research Summary Report in four sections as follows: Section 1 -

"General Instability of An Orthotropic Circular Cylindrical Shell



Subjected to A Pressure Combined with An Axial Load Considering Both
Clamped and Simply Supported Edge Conditions' by Carl C. Steyer and
Thomas A. Carlton, Jr.; Section 2 - "Stress in A Segment of A Conical
Shell Subjected to Lateral Normal Load" by Chin Hao Chang; Section 3 -
"General Insfability of An Orthotropic Circular Conical Shell Sub-
jected to Hydrostatic Pressure and A Compressive Axial Force' by

Carl C. Steyer and Shih-Cheng Zien; and Section L - "Matrix Shear

Lag Analysis Utilizing a High-Speed Digital Computer" by William K. -
Rey. Abstracts of these four reports appeared in Volume 2, Number 2

issue of the Scientific and Technical Aerospace Reports as abstract

numbers N6L-11335, N6L4-11336, N6L-11337 and N6L-11332 respectively.

The initial effort of contract NAS 8-5012 was continued and

expanded under the terms of contract NAS 8-5168 which provided for

a twelve month effort beginning October 15, 1962. Modification
Number 2 extended the period of performance through December 1L, 1962
and Modification Number 3 extended the period of performance through
January 1L, 196l.

A letter of appointment dated November 5, 1962 from Marion S.
Hardee, Contracting Officer, designated Mr. Norman C. Schlemmer and
Mr. James B. Sterett of the Propulsion and Vehicle Engineering
Division, Structures Branch, as his principal and alternate repre-
sentatives, respectively. Amendment Number 1 executed by James W.
Fletcher, Contracting Officer, and dated August 30, 1963 relieved Mr.
James B. Sterett of this responsibility and appointed Mr. Orville E.
Wheeler and Mr. Norman C. Schlemmer as the principal and alternate

representatives, respectively, of the Contracting Officer.



Scope of Work

The work scope of contract NAS 8-5168 provided for a study of
the following seven items:

1. Completion of the theoretical studies in the evaluation and
application of Bodner's work to stiffened cylinders subjected to a
pressure, an axial load, or appropriate combinations of these loads
with an experimental verification of the resulis of these studies,

2. A theoretical and experimental study of a very thin ortho-~
tropic cylinder that buckles in a diamond shaped pattern as a result
of being subjected to an axial load, a bending moment, a pressure,

a torque, or certain combinations of these loads.

3. The development and experimental verification of a linear
differential equation expressing the instability of a cylinder of a
type similar to the one developed by Bodner but which includes
additional non-linear or second order terms in the strain-displacement
relationships.

L. A theoretical and experimental study of a stiffened cylinder
or cone frustum subjected to a bending moment or a combination of a
bending moment and other loads.

5. The analysis of mathematical problems presented by the
strength and instability studies.

6. The theoretical analysis of a segment of a cone frustum
considering temperature distribution and other loads as specified by
the Government.

7. The experimental and theoretical study of the stress distri-

bution and shear lag for stiffened cylinders, cones or cone frustums.



Personnel

Professional personnel of the University of Alabama participating
in the accomplishment of the work scope were Dr. T. A. Carlton, Jr.,
Dr. C. H, Chang and Dr. C. C. Steyer of the Department of Engineering
Mechanics, Professor William K. Rey of the Department of Aerospace
Engineering and Mr. William S. Viall of the Research Institute. The
following students in the College of Engineering served as Graduate
Associates, Graduate Assistants or Student Technicians: Thomas D.
Easter, Thomas C. Evans, Raymond C. Montgomery, Colonel M. Pearson,
Charles H. Ratcliff, Melvin K. Richardson, Jimmie L. Smith, Charles
R. Weeks and Tao Wu. Secretarial assistants and machinists of the
Bureau of Engineering Research, the Research Institute, the Depart-
ment of Aerospace Engineering and the Department of Engineering

Mechanics were utilized.

Summary of Results

I. The analytical study of the instability of circular cylin-
drical shells was continued. Equation 32 in Section 1 of the Sum-
mary Report for contract NAS 8-5012 was programmed and checked. The
Fortran IT computer program for the solution of this equation was
previously submitted as Technical Report A for contract NAS 8-5168
and is included in this report as Appendix A. This program may be
used to predict the instability of a short orthotropic or stiffened
circular cylindrical shell subjected to a combination of external
pressure and axial loads with either clamped or simply supported

edge conditions.



IT. A second study of the stability orthotropic circular
cylinders considered the case of a cylinder simultaneously subjected
to an axial load, an end moment and a uniform radial pressure. This
study was supported jointly by NASA:contract NAS 8-5168 and NASA
research grant NsG-38l. The results of this study were previously
submitted as Report Number 11 of the University of Alabama Research
Institute and are included in this report as Appendix E. Appendix
E contains both the Analysis and the Fortran II computer program.

III. The analytical study of the stability of orthotropic
circular conical shells was continued with the programming in For-
tran IT language of the constants and coefficients that were pre-
sented in Section 3 of the Summary Report for contract NAS 8-5012;‘
This program was previously submitted as Technical Report B for
contract NAS 8-5168 and is included in this report as Appendix B.

IV. A second study of the stability of conical shells considered
the case of a segment of an isotropic truncated conical shell with
linearly varying thickness subjected to lateral normal loads. An
asymptotic general solution was obtained and previously submitted
as Technical Report C for contract NAS 8-5168. The results of this
analysis are contained within this report as Appendix C.

V. A survey of current literature was conducted to identify
publications containing information pertaining to the subject matter

of contract NAS 8-5168. The Scientific and Technical Aerospace

Reports issued by the Scientific and Technical Information Division

of NASA, the Technical Abstract Bulletin issued by the Defense

Documentation Center, the Applied Mechanics Reviews published by the




American Institute of Aeronautics and Astronautics were scanned each
month for reports that appeared to contain information of value.
Copies were then obtained of those articles whose title indicated
they were related to work scope of contract NAS 8-5168. Abstracts
were then prepared of those publications that contained particularly
useful data or information. During the period of performance, copies
were obtained of 283 articles and abstracts were prepared of 39
articles. The list of publications and abstracts were previously
submitted as Technical Report D for contract NAS 8-5168 and are
contained within this report as Appendix D.

VI. The possibility of experimentally verifying some of the
analytical studies of the stability of cylindrical shells was con-
sidered. After a comprehensive review of available literature per-
taining to the fabrication and testing of plastic models, it became
apparent that no plastic material or fabrication procedure had been
widely adopted for model testing. Every procedure appears to contain
inherent faults for the study being contemplated. Essentially the
problem becomes that of selecting the procedure whose known faults
may be expected to have the least effect on the tests to be conducted.
Although no cylinders were actually made or tested, cellulose acetate
and vinyl were selected as the two materials that would be used in
preliminary studies. These two materials are available as sheet in
various sizes and thicknesses. This experimental program will be

continued under the:terms of contract NAS 8-111565.



VII. In Section L of the Summary Report for contract NAS 8-5012,
two analyses were presented for determining the stress distribution
in an axially loaded, integrally stiffened panel. A number of other
analyses of this problem are available. In general, the differences
in the results obtained from the various analyses may be attributed
to the differences in the assumptions employed. In order to determine
the validity of the various analyses, an experimental program was
begun. This experimental program employs integrally stiffened
7075-T651 aluminum alloy panels approximately eighteen inches wide
and twenty-four inches long. Four panels were prepared having a
ratio of stiffener area to stringer area varying from one-half to
two.

Preliminary testing of the first paneldq,Panel'A}.indicated that
poor machining had produced a panel that could not be effectively
utilized. However, the preliminary testing of Panel A did disclose
many problems in the instrumentation and certain undesirable charac-
teristics of the testing machine used to apply loads to the panels.

A considerable amount of timeand effort was necessarily expended in
refining the instrumentation, correcting some of the deficiencies
in the testing machine and obtaining satisfactory end supports.

Preliminary testing of the second panel, Panel B, indicated that
all of the known problems had been corrected. Panel B was instru-
mented with a total of one hundred and forty strain gauge channels.
Iwo complete sets of data were obtained for each of four different
symmetrical loading conditions, Computer programs were written for
reducing the strain gauge data obtained from both Ehe uniaxial and

rosette gauges utilizing the UNIVAC SS 80 computer.
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After reducing the data obtained from testing Panel B it became
apparent that the results were of no value for a number of reasons,
The results obtained from two supposedly identical tests for each
of the loading conditions did not agreé in many important instances,
Secondly, although every precaution was taken to eliminate bending
of the panel, bending was present in some of the tests and an in-
sufficient number of strain gauge stations prevented a full evalu-
ation of the bending effect. Finally, some of the results exhibited
an unexplained non-linearity and apparent zero drift in certain
gauge channels. Therefore, the data obtained in the testing of
Panel B is not being submitted at this time pending a complete re-
evaluation of the testing procedure, instrumentation, and data
reduction methods.

The attempt to obtain satisfactory, reproducible experimental
data for Panel B, as well as for Panels C and D, will be continued
under the terms of contract NAS 8-11155. The experimental results
will be compared with various analytical predictions in an attempt

to determine the most satisfactory analysis.



APPENDIX A

FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF
A DONNELL TYPE OF DIFFERENTIAL EQUATION FOR A

SIMPLY~-SUPPORTED CYLINDRICAL SHELL

Prepared by

Thomas D. Easter

<
This appendix was previously submitted ag Technical Report A for

contract NAS 8-5168.
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Technical Report A for NASA Contract NAS8-5168

FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF A
DONNELL TYPE OF DIFFERENTIAL EQUATION FOR A SIMPLY- \

SUPPORTED CYLINDRICAL SHELL L*
Prepared By 4/®
Thomas D. Easter /:2//

This report presents a FORTRAN II Computer Program for use with
the Univac Solid-State 80 Computer for obtaining the solution of equation
(32) in the report, "A Study of the Stability of Reinforced Cylindrical
and Conical Shells Subjected to Various Types and Combinations of Loads,
Section I-General Instability of an Orthotropic Circular Cylinderical Shell
Subjected to a Pressure Combined with an Axial Load Considering Both Clamp-
ed and Simply Supported Edge Conditions,'" by Carl C. Steyer and T. A.
Carlton, Jr., submitted November 1962 under Contract No. NAS8-5012 to
the George C. Marshall Space Flight Center of the National Aeronautics
and Space Administration.

The FORTRAN II program solves equation (32) of the above referenced

report by the following computational steps:

Part A: For Assigned R/t and A
1. Given particular values of E , E , v, . , and h (or t),
X S xs sx
the extensional and shearing stiffnesses, al, a2, a3, au,

and the bending and twisting rigidities, Dl’ D2, D3, Du, are

calculated.

2. Using the computed values of Step 1, the constants dl’ through

duz’ are computed.
3. For a selected set of values for m and n, the constants d43

through d49 are computed.



10.

Using an assigned value of k

. (k1=—%), the solutions of equation

. 2 . ..
(32) yields maximum and minimum values of R'q. Using the minimum

positive value of q, the value of o is computed.

The value of m is incremented and Steps 3 and 4 are repeated
yielding a new value of o.

Step 5 is repeated until o=o is obtained for the n assumed

in Step 3 and k) of Step 4. The value of m is then set to its
original wvalue.

The value of n is incremented and Steps 3 through 6 are repeated.
Step 7 is repeated each time n is incremented until o=c_ . , the

min

minimum o occurring for the value of k, assumed in Step 4 is ob-

1

tained. The value of n is then returned to its original value.
The value of k1 is incremented and Steps 3 through 8 are repeat-

ed resulting in a value of o=0 o for the new value of kl'

Step 9 is repeated for an applicable range of k. values, render-

1
ing a 0=cmin for some combinations of m, n and k1 and the assumed
R
values of /t and A. It should be noted that k1 may be positive

or negative. At the completion of Step 10 the value of k1 is

returned to its original value.

Part B: For a New R/t Value

Since a new value of R/t for a fixed value of R implies a change

a D D D

in t, new values of a,, a 4 Do Dy,

1 9’ and D,, are com-

3’ L
puted.
Steps 2 through 10 of Part A are repeated resulting in a minimum

positive value of o for some combination of m, n and k and the

new R/t.
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The information obtained from Parts A and B may be presented in
tabular form ‘involving o, m, n, kl, R, t, and L to display composite

results of the effects of cylinder geometries and internal pressures or

the information may be displayed in graphical form, e.q., o vs R/t, ete.

A summary of the FORTRAN names used in the computer program is shown
below in the Fortran Notation Legend.

FORTRAN NOTATION LEGEND

Variable Fortran Program Name
d1 D(1)
d2 D(2)
d3 D(3)
du D(4)
d49 D(49)
ay Al
% A2
0‘3 A 3
%y AL
D1 D1
D2 D2
D3 D 3
Du D4

A Y



Variable
m
n

Ky

E, E, (Moduli of Elasti-
X s

city for orthotropic circular

Modulus of ridigity

v, v __, (Poisson's ratios

Xs SX

for orthotropic shell )

P
K, ( /q)

R (radius)

L (length)

h or t (thickness)

g
dye

dyg

dus

w -

PRSQ

27RH

integer counters

used for program

purposes

R/t Value

dygk1dy3

AL

Fortran Program Name

A

B

FNUXS, FNUSX

RSQ

PRSQ

SGMA

I &J

ROT

BR

BRABS

AC



(BR)?-14(AC)
RAD

(qu)1

(R2q )2

1T(R2q)1

rr(R2q)2

PRSQ1
21RH

PRSQ2

27RH

Al .-l N T N N D N T O O B S B B O e
3]
—
f
w

ROT

RSQL

RSQ2
PRSOL

PRSQ2

SGMA1

SGMA2

R2

Al42

Al2

Al3

A23

A34

Al103

A203

A3D2

DIR

D2R

D3R

D4R

S2

YA2

A5



xumu YAL4
n2 B2
nLL B4
D3D4 D34
D2D3 D23

The following explanations of the program input and output system
used the Fortran Program names listed above in order to make the explan-

ations compatible with the actual Fortran Program.

INPUT

Data cards are read into the program in the following order and

form: The First Data Card contains the constants EX, ES, FNUXS, G, and

the variable H. They are in thé following order, EX, ES, G, H, FNUSX,
and FNUXS, with a Read Format Statement of (6El10.4), which means this
data must be punched on the first data card in the following form.

Columns 01 to 10 First data word, EX.

Columns 11 to 20 Second data word, ES.

Columns 21 to 30 Third data word, G.

Columns 31 to 40 Fourth data word, H.

Columns 41 to 50 Fifth data word, FNUSX.

Columns 51 to 60 Sixth data word, FNUXS,
Example: Let EX = 1.03x107, and ES = 1.3x102. Only the first portion

of the data card is illustrated below. The remainding values,

G, H, FNUSX, FNUXS, would be punched in the remainding spaces

as outlined above with the same form as EX and ES.

EX ES
Column No. 1 2 3456 7 891011 12 13 141516 17 18 19 20--80
Word Form 1 O/iﬂﬁ 07 n; 1 . 3 - ?ﬂ 2,
Exponent sign Algebraic sign Exponent

G, B, FNUSX, and FNUXS would go in columns 21 to 60, following

EX and ES.

A6



A7

The Second Data Card contains the variables S, H, R, C, Sl1, and

ROT. S1 here is the initial value of Sl. The Read Format Statement

is (5E10.4, I4). 1I4 is the only change from the above explanation,

It means begin at column no. 51, and purch an integer of 1 to 4 numbers:
Example: For ROT = 25 and ROT = 1250.

ROT

Column No =--=—==== momcmmoon 51 52 53 54 55--—-mo-mmmmommm
___________________ 2 5 e

The Third Data Card contains the variables Sl1. Sl here is the

second value of S1. The Read Format Statement is (E15.7) which means
one S1 value per card punched in the first 15 spaces.

The number of different values of Sl's desired for each R/t ratio
will determine the number of remaining data cards which will have the
same form as the third data card explained avove.

Example: If S1 = 0.1, 0.2, 0.3, 0.4, 0.5 for an assigned value of
the R/t ratio, the initial value of S1 = 0.1 will go on the
second data card, the remaining values of Sl will go on data
cards 3 thru 6 as follows: 0.2 to card three, 0.3 to card
four, 0.4 to card five and 0.5 to card six. The form used
is the same as that explained for card three above.

If it-is desired to run data for more than one R/t ratio, duplicate
the above data card procedure for the new R/t ratio and place these cards
after the cards for the first R/t ratio. This can be carried out for
any number of R/t ratios.

OUTPUT

In the printout, the symbol # represents an equal sign (=). The

variable is printed out, followed by its value. The meaning of the

variable can be found in the Fortran Notation Legend.
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Exponent signf} Exponent
Example: A # 1.0000E 60 In the Fortran Notation Legend, A is shown

to represent m, therefore the above statement reads m = 1. If
the exponent is positive, a blank space will be left between
the E and the exponent as shown above. 1If the exponent is
negative, a minus sign (-) will be printed between the E and
the exponent. If m had been negative, a minus sign would be
printed between the # and 1 as follows: A # - 1.0000E 00

When "SCALED RADICAL OPERATION" appears on the printout, this means
that some of the values in the operation have reached the point of over-
flow and have been scaled down.

When "NEGATIVE RADICAL® appears on the printout, this means that
the value under the radical in the quadratic equation used in the pro-
gram, is negative. Conversely, the printout "POSITIVE RADICAL" indicates
that the value is positive.

"SIGMA MINIMUM" is the minimum value for o for a particular value
of m, with m varying and n held constant. "SIGMA MINIMUM FINAL" is the
final minimum value of o for a k, value, varying m over a range of‘n's

1
with k., and R/t held constant. The final value printed for *SIGMA MINIMUM

1
FINAL" is the minimum value.

Each time new values of A, B, ROT, and Sl are used, it will be
indicated on the printout as “"NEW VALUE FOR A" or “NEW VALUE FOR B, "
etc.

When S1 = 0, this is indicated on the printout and the program
performs a special operation for finding the value of ¢ in this case,

which will be indicated by "SGMA™. Only one value of ¢ is found, since

the quadratic equation is not used in this special case.



CONTROL OF RANGE OF A AND B

Statement 134 in the program controls the range over which B will
run. This statement is in the following form:

Column No. 1 2 3 -~--7 8 9 10 ~=---mmommmmmm o 80
134 IF (B -17.0) 127, 130, 130

The number 17.0 inside the parenthesis controls the upper
limit of B. In this case B will run or increment up to 17.
If it is desired to change the upper limit of B, all that is
needed is to change the number in parenthesis, which must be
written as a real number.

Example: For the upper limit to be 24, change 17.0 to 24.0.

Celumn No. 1 2 3 ----7 8 9 10 ==rmmvmmmmm e oo 80
134 IF (B -24.0) 127, 130, 130

The lower limit of B can be changed by changing statement 100,
which is in the following form:

Column No. 1 2 3 ----7 8 9 1011 12 13 14 —--oomomm—- 80
100 B=1 . 0

The lower limit of B, or the point B starts at is 1. To have B
start at 4, you would change the 1.0 to 4.0. These must be written as

real numbers. The new statement would be as follows:

Column No. 1 2 3 ====7 8 9 10 11 12 =—=mmmmmmmmmmomooooo 80
100 B=4 ., O

In the above examples, B would start at 4 and run to 24. 1In the
original case, B would start at 1 and run to 17.

The upper limits of A is controlled by statement 135, which is in
the following form:

Column No. 1 2 3 ----7 8 9 10 11 -----ommmmmmmcme o 80
1 35 I F (I - 25)102, 126, 126

The number 25 inside the parenthesis means that A will in-



Al0

crement by 1, 25 times after a minimum value of o has been
found. The total number of A's will be 25 plus the number

of A's used to reach a minimum value of o. To change the
upper limit of A, change the number in the parenthesis. These
numbers must be written as integers only. If the value 25 were
replaced by 30, 5 more values of A would be added. The new
statement would be as follows:

Column No. 1 2 3 —--—--- 789 ——mmmmmmm e oo 80
1 35 I F (I - 30)102, 126, 126

The lower limit of A is controlled by statement 101, which is
of the following form:

Column No. 1 2 3 =---7 8 9 10 11 -------mmemmmmm - 80
101 A=0. 0

This means that A starts at 0 and must be written as as a real number

0.0. 1If you wanted to start A at 6, you would change the statement to read:

Column No. 1 2 3 ==-=7 8 9 10 11 —=mmmommmcmmmmmm 80
101 A=6 . 0

By changing statements 134, 135, 100, and 101, the programmer can
change or cut down the range of A and B, thus eliminating needless compu-

tations in certain cases.



All

The source program listing for the cylinder problem is as follows:
C FORTRAN PROGRAM FOR CYLINDER PROBLEM. A FINAL MINIMUM VALUE OF
C SIGMA IS FOUND FOR A FAMILY OF K1 VALUES FOR EACH RADIUS TO
C THICKNESS RATIO.

DIMENSION D(49)
99 READ 1, EX. ES, G, H, FNUSX, FNUXS
1 FORMAT (6E10.4)

Al=(EX*H)/(1.0-FNUSX*FNUXS)

A2=(ES*H)/1.0-FNUSX*FNUXS)

A3=(G*H)/2.0

AlL= (EX*FNUSX* )/(1.0-FNUSX*FNUXS)

Dl1=(EX*H**3)/(12.0%*)1.0-FNUSX*FNUXS))

D2=(ES*H**3)/(12.0*(1.0-FNUSX*FNUXS) )

D3=(G*H**3)/12.0

Di4= (EX*FNUSX*H**3)/12.0* (1.0 FNUSX*FNUSX))

READ 2, S, H, R, C, S1, IROT
2 FORMAT (5E10.4,14)

PRINT 17, IROT
17 FORMAT (13/. 37H STARTING OVER FOR A NEW VALUE OF ROT = ,1I4:

PRINT 3, Al, A2, A3, A4, D1, D2, D3, D4, S, H, R, C, S1, IROT
3 FORMAT (18H DATA PRINT OUT- - - -,2 5HAl = ,El15.7,/,5HA2 = ,El5.7,/,

15HA3 = ,El15.7,/,5HA4 = ,E15.7,/,5HD1 = ,,El5.7,/,5HD2 = ,El5.7,/,

25HD3 = ,El5.7,/,5HD4 = ,El15.7,/,5H8 = ,El5.,/,5HH = ,El5.7,/,5H

3R =, E15.7,/,5HC = ,E15.7/,5HS1 = .El15.7,/,6HROT = ,14.5/)

Y=(3.1415926*R)/C
R2=(R**2)

AL2= (AL**2)



D34=D3*D4

D23=D2*d3

Al13=A1*A3

Al12=A1*A2

A23= A2*A3

A34=A3%Al4

A1D3=A1*D3

A2D3=A2*D3

A3D2=A3*D2

DIR=D1*R

D2R=D2*R

D3R=D4*R

D4R=DU4*R

I=0

SMAX2=1.0E+49

D(41 )=A12*R2

D(42 )=(-A42*R2 )+A1*D2

D(39 )=(A23*R2 )+ (A2D3/2.0)

D(40)=(A3D2 )+(D23/(2.0%R2))

D(34)=(A12*A3*R*R2 )~ (A43*A3*R*R2 )-((A12+A42)*D3R/2.0)
D(35)=(A13*D2R >+ ((A1*D23)/(2.0*R))

D(36)=2.0*A1*D4

D(37)=A1*R

D(38)=D(37)

D(33)=((A34+A42-A12)*2,0*R2 )~-AL*D3)

D(27)=2.0*A34*D3R

D(28)=((A12-A42-(2.0%*A34) )*D2R )+ (((2.0*%A3)+A4)*D23/R)

D(29)=((A12-A34-Al42)*2.0*R2)--(A4*D3)

Al2



D(30)=(((A3*D4)+A1*D2))*2.0+(D34,/R2)
D(32)=A3*R)+(D3/(2.0*R))
D(31)=-D(32)

D(25)=-(2.0%D(39))
D(26)=(((2.0*A3)~-Al )*R )+ (D3/R)
D(22)=(A23*D2R )+ ((A2*D23)/(2.0*R))
D(23)= D(25)

D(24)=2.0*D(40)

D(19 )=(2.0*A13*D4R )+ ((AL*D34) R)
D(20)=A1*Dl

D(21 )=A13*R2+Al1D3/2.0
D(18)=A1D3-(2.0*A13*R2)

D(14)=(A12-(2.0*%A34)-A42)*2.0*D3R

Al3

D(15)=(((2.0%A12)-(4.0*%A34)-2.0*%A42 ))*DUR)+(2.0*A13*D2R+1 (((A1*D23 )+

(4.0*A3*D34 )+ (2.0*A4*D34))/R)

D(16 )=(A13*R2+ (A1*D4)+(A1D3/2.0)

D(17)=((A12-A42-(2.0%A34) YR2+ (((2.0*A3)+A4)*D3)

D(13)=((2.0*A34)-A12+AL2)*2.0**R2

D(9 )=(4.0*%A23*D3R )+ ((2.0*A4*D23) /%)

D(10)=((A12-A34-A42)*2 . 0*D2R )+ (2.0%A23* D4R )+ (((2.0*A3*D23)

1+(A2*D34))/R)

D(11 )=((A12-A42-(2.0%A34))*R2 )+ (A1*D2)-Al4*D3)+(2.0*A3*D4 )+ (D34 /R21 )

D(12)=D*39 )
D(8)=D(25)

D(5)=2.0*D(22)

D(7)=(A23*R2 )+A3D2+((A2D3+(D23/R2))/2.0)

D(5)=A13*D1R )+ ((A1D3*Dl)/(2.0%R))
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101
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D{4)=((A12-A42-(2.0%A34) )*DIR )+ (2.0*A13* (D3R+ D4R ) )+ (((A1*D34)+1 (2 .0*

A3*DL*D3 )+ (A4*DL*D3) )/R)

D(3)=2.0*A12*D3R+2.0*A13* D4R+A23*DIR+Al 3*D2R-2 . 0*AL42* D3R

1-4.0%A34*D3R-2.0*A42*DUR -4, 0*A34* D4R+ (A2D3*D1+A1*D23) /(2.

20*R)+ (4.0*%A3*D34+2 . 0*A4*D34) /R

D(2)=(((2.0%A12)-A42-(2.0%A34) )*D2R )+ (2.0%*A23* (D3R+D4R ) )
1+ (((A2*%D34 )+ (2.0%*A3*D23)+AW*D23))/R)

D(1 )=(A23*D2R )+ ((A2*D23)/(2.0*R))

PRINT 4, (J, D(J), J =1, 42)

FORMAT (2HD(,12,4H) = ,E15.7/)
B=1.0

A=0.0

PRINT 5,

FORMAT (14HNEW VALUE OF B,2/)

SMAX=1.0E+49

PRINT 18,

FORMAT (14 HNEW VALUE OF A,2/)
A=A+1.0

YA2=Y**Q xA**2

YAU=YA2%*2

B2=B**2

BY=B2%*2

S2=8%*2

D(43)=((YAL*D(37))+(YA2*B2*D(32)))/2.0
DC46)=~ (((YA2*YAU4*D(21 )+YAU4*B2*D(17 )+YA2*B4*D(12)))/2.0)
D(47)=(YA2* (D(A1 )+ (S2%*D(42))))-(B2* (D(39 )+ (S2*D(40) ) ) )+ (YAL*S

1*D(36 ) )+ (YA2*B2*(D(29 )+ (S*D(30) )) )+ (B4*(D(23)+(S*D(24) ) ) )~ (YAL



104

150

20

151

103

106

2*YA2*D(D(20) )- (YA4*B2*D(16))- (YA2*B4*D(11 ) )~ (B2*B4*D(7))
D(49 )= (YA4* (D(34)+(S2*D(35))) )+ (YA2*B2*(D(27 )+ (S2*D(28))) »+
1(BW4*S2*D(22))-(YA2*YAU*S*D(19 ) )YAL*B2* (D(14 )+ (S*D(15))))-YA2
2%BU4* (D(9 )+ (S*D(10))))-(B2*BU4*xS*D(6 ) )+ (YAL*XYAL*D(5) )+ (YA2*YAL
3*B2*D(4) )+ (YAW*BL4*D(3) )+ (YA2*BU4*B2*(2 ) )+ (B4*B4*D(1))

PRINT 6, D(43), D(46), D(47), D(49)

FORMAT (8HD(43) = .E15.7,/,8HD(46) = ,El15.7,/,8HD(47) = ,El5.7,/,
18HD(49) = ,E15.7,6/)

IF (S1-0.0) 103, 104, 103

PRINT 7

FORMAT (8HS!l = 0.0)

RSQ=(-(D(49)/D(46)))

PRSQ=3.1415926*RSQ

SGMA=PRSQ/(6.2831852*R*H)

PRINT 8, SGMA

FORMAT (HSGMA = ,E15.7,12H FOR S1 = 0.0)

IF (SGMA) 150, 151, 151

PRINT 20,

FORMAT (30HSGMA FOR S1=0.0 IS NEGATIVE)

GO TO 102

SGMAM=SGMA

GO TO 122

BR=D(46 )+S1*D(47)

BRABS=ABS(BR)

DOM=2 . 0*S1*D(43)

IF (BRABS-1.0E+10) 105,105, 106

BR=BR*(1.0E-10)

Al5
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D(49 )=D{49 )*(1.0E-10)
D(43)=D(43)*(1.0E-10)
AC=D(49)*S1*D(43)
D(49)=D(49)*(1.0E+10)
D(43)=D(43)*(1.0E+10)
RAD=BR**2-4.0*AC
IF (RAD) 107, 108, 108
107 PRINT 9,
9 FORMAT (24HSCALED RADICAL OPERATION )
GO TO 109
108 RADRT=SQRT(RAD)
RADRT=RADRT*(1.0E+10)
BR=BR*(1.0E+10)
PRINT 10,
10 FORMAT (24HSCALED RADICAL OPERATION )
GO TO 111
105 AC=D(49 )*S1*D(43)
RAD=BR**2-40*AC
IF (RAD) 109, 110, 110,
109 PRINT 11, Y, RAD, S1, A, B,
11  FORMAT (26HNEGATIVE RADICAL----Y = ,E15,7,15X6H Rad = ,E15.7,15X
154 S1 = ,E15.7, 15X4 HA = ,El15.7, 15X4 HB = ,E15.7,6.)
GO TO 102
110 RADRT=SQET(RAD)
111 RSQ1=(( BR)+(RADRT))/DOM
R3Q2=((-BR )-RADRT) )/DOM

PRSQ1=(3.1415926*RS0Q1 )
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112

114

116

13

115

113

118

120

119

122

123

124

14
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PRSQ2=(3.1415926*RSQ2)

SGMA1=PRSQ1 /(6.2831852*%R*H)

SGMA2=PRSQ2 /(6 .2831852*R*H)

PRINT 12, Y, RSQl, RSQ2, PRSQ2, S1, A, B, SGMAl, SGMA2

FORMAT (26H POSITIVE RADICAL--Y = ,El15.7, 15X7HRSQl - ,El5.7, 15X
17HRSQ2 = .E15.7, 15X8HPRSQL = ,E15.7, 15X8HPRSQ2 = ,El5.7, 15X5HS1 =
2,E15.7, 15X4 HA = ,E15.7, 15X4HB = ,E15.7, 15X8H SGMAl = ,El15.7,
15X8HSG=MA2 = ,El15.7,6/)

IF (SGMA1-SGMA2) 113, 112, 112

IF (SGMA2) 114, 115, 115

IF (SGMAl) 116, 119, 119

PRINT 13

FORMAT (33HBOTH SGMAl AND SGMA2 ARE NEGATIVE)

GO TO 102

SGMAM#SGMA2

GO TO 122

IF (SGMAl) 118, 119, 119

IF (SGMA2) 120, 115, 115

PRINT 13,

GO TO 102

SGMAM=SGMA1

IF (SGMAM=SMAX) 123, 124, 124

SMAX=SGMAM

GO TO 102

U=A-1.0

PRINT 14, SMAX, U, B, S1, IROT

FORMAT (15H SGMA MINIMUM = ,El5.7, 10H, FOR A = El6 7, 5XLHB =




135

126

134

127

128

129

15

130

22

131

16

1E15.7, 5X5 HS1 = ,El15.7, 5X6HROT
I=I+1

IF (1-5) 102, 126, 126

1=0

IF (B-2) 127, 130, 130

IF (SMAX-SMAX2) 129, 128, 128
B=B+1.0

GO TO 101

PRINT 15, SMAX, A, B, S1, IROT

FORMAT (22HSIGMA MINIMUM FINAL =

14HB = ,E15.7, 5X5HS1 = .El5.7, 5X6HROT =

B=B+1.0
SMAX2=SMAX
GO TO 101
READ 22, S1

FORMAT (El15.7)

IF (S1-9.999999E+49) 131, 99, 131

PRINT 16

,E15.7,

,14.6,/)

10H, FOR A =

,14.6/)

FORMAT (36HSTARTING OVER FOR A NEW VALUE OF Sl.)

GO TO 100

,E15.7,5X

Al8
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FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF
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Technical Report B for NASA Contract NAS8-5168

FORTRAN II PROGRAM FOR THE EVALUATION OF A DONNEL
TYPE OF DIFFERENTIAL EQUATION FOR AN

ORTHOTROPIC CIRCULAR CONICAL q/)/

SHELL C\/@

Prepared by

Thomas D, Easter, Research Assistant
and

Colonel M. Pearson, Research Assistant

This report presents a FORTRAN II Computer Program that
operationally is compatible with the FORTRAN processors of the IBM
7090 and the UNIVAC SS 80 computers. Additional details regarding
the individual processors, actual machine compilation and object
program execution, and so forth, are available in separate program-
ming and operations reference manuals. Specifically, this report
presents a FORTRAN II Computer Program that evaluates constants
and coefficients for the Donnel-type, eighth-order, differential equation
in the report, "A Study of the Stability of Reinforced Cylindrical and
Conical Shells Subjected to Various Types and Combination of Loads,
Section IiI - General Instability of An Orthotropic Circular Conical
Shell Subjected to Hydrostatic Pressure and A Compressive Axial
Force, ' submitted September, 1963, under Contract No. NAS8-5012
to the George C. Marshall Space Flight Center of the National Aero-

nautics and Space Administration.
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CONSTANTS

The constants which appear in equation (36) of the parent
report are functions of the physical parameters describing the conical
shell. The parameters are as follows: o, the apex angle, aq, A,
and «a ; the extensional and shear stiffness coefficients, p, the applied
external pressure; Q, the axial load; S;, the value of S at the base
of the cone frustrum; 7Ygg and Ygg, the Poissons ratios; h, the
wall thickness of the shell; and n, the number of waves in the cir-
cumferential direction after buckling has occurred.

Equations (29), (30), and (31) of the parent report can be

written in the following form:

AJF + A, F' + A, F" + A,G + A,G' + A;H + A H' = 0 (29)
B,F + B,F' + ByG + B,G' + B,G" + B,H= 0 (30)
C,F+ C,F' +CG+ CH+ CH + C,H"+ C, H"

+ C; H™ =0 (31)

Where the superscripts appearing on F, G and H denote the derivative
with respect to S. The coefficients A'g, B'g, and C'g are defined

as follows:

A = (2, - agnz)_}; + (a, - 2gn?), A, = a; + a, S
S
Ay = ag + agS + a, S’ A4=—auné—amn
S
Ay = -a;n - a13n§ Ag = ay 1y a4
S
A, = ag + a, S



B3
B, =b,nl+bn B, = bgn + b,nSs
S
B, = (bg - byn?d L + (bs - by, n?) B, = b, + by S
- 3 K 1
Bg = bg ¥ by S + b, S Bg = byn = * byn
S
- _ 1 + — - —
C, c, = Cy C, cg t c, S
S
_ - 1 _ — 1
Cs CsNl = -~ NCg Cq = (cppn® - cyy10%) =,
S S
= _ 1 ry +Cl“l'(c-cnz)
Cs = (cyp - cgm?) =+ ¢4 S 8 = 7 14
ch S
66 = (cy3 - ¢y 1? % tcy E7 = Cis
i Cyp S Cy, = ¢y S

Equations (29), (30) and (31) can be reduced to two differential

equations in terms of functions of F and H only.

D,F + D,F' + D, F" = h, (37)

E,F + E;F' + E;F" + E,F" =h, (38)
Where the coefficients Dj, Ej, h, and h; are defined as follows:
— - — — = —2
D, = C,(A;Cy - A;Cy) + C;(-4;C) + A/ C,
D, = Ez (A, Esl - Ay E3) + (61 + E:2|) (-A,Cy + A, Eg
D; = Ej_z('AsE::«:) + Asaé

h2 = D4H + D5 H' + D6 H" + D7 H™ + Ds H™ + D9 g™

D, = Eg(-AS) + (‘64)('A463 + Asaal) + (-A563)(—E4')
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CE(-4) + (T (-4,C + A,C) + (-ATY[-C, + T
(-Co) (-8,C5 + AT + (-A,Cy{-(Cs + Cf)]
(-C)(-A,Cs + AC) + (-ACH[-(Cy + T)]
(-Co) (- A,Cy + ATy -~ (-A;C)[-(C, + Gyl
(-A5Cy) (- Gy

E,F +E,F + E;F" + E, I~

A+ B (-48C) +c,@+ c"®

A,(D)+B,(-4,Cy + C,(D+ (2C, + (B

A,(D+ (€, + 26,)(3)

c®

E;H + EgH + E,H' + EgH" + E;0" + E H™+E, H

—_— — —2
-2B5 C3 C3 + B‘1 C3
'AsBs C3" t 2A4B563' + AsBs—és - A4B463

]
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E, = C;5)+(3)(C, + 2T, + ¢
ES = 67@+@((_:5 * 266' + E:7”)
E, = GB)+(3)(C + 2T, + T
Ep=3)(C, + 2C,)
E11=;\’_é>68
(4) = 2A;B;C, C; + A, B, C. - A B, C.
Y - e —n — — —
L5,/ B '@' A5B5C3 - 2A4B5C3 - AsBscs + A4B4C3

2A,B,C,C;, - A, B,C?

Equations (37) and (38) are reduced to one eighth-order Donnel-
type differential equations in terms of the function H alone, which is
itself a function of S or S, the coordinate in the generatrix direction.
The equation is the same as equation (36) of the parent report and can

be expressed in the equivalent form

where the T coefficients are defined as follows:

T, = + K, gg

—
'Y
n
=i
—
o?"’l
+.
=i
[ ]
~
)
+
ey
~
+ .
=i
o
aa |
o]
+
]
A?'\'
P
o+
5]
o



Ts = Rl?s + R2 (£, + _fsl) + I_<3 g + Ky (g,
Te = Rl_f‘l + K, (f; + _f4,) + K, g *+ K, (g
T = I_<1 fy + K, (f, + f3) + K, Es + K, (g2

3
™
n
=i
You

= |
Y

+

=i
N
=y
o

+

|
N -
S’

+
mml
110}
)

+
AW
—~
o0
i

where:

K, =7\‘27\3 '—7—‘27\'3'*'7‘17\3
R, = %, %,

K, = "Kz'i3 + Kzis' - K, Ay
K, = -K, X,

(w]
1
O
'_Fi
=
w
O

g2)
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The T coefficients calculated in equation (39) are polynomials
in S. A designation which is used to denote all the T; coefficients

and their components is as follows:

where = |, denotes the constant coefficient of a particular §, the sub-

script i corresponds to the subscript of T; and n denotes the

power of S. The range of S for each order of H is as follows:

— =31 — 0 —_ — 28
T, = t; _ 31 5  Foeuinnn. + ot + b, 1S+t 4 S
— = 2 27
Ty = o _ 32 S e, *ty 5 S
— = 33 — 28
F - ttg o, S
— - 34 _ 28
T4 = t4,_34 S ooooooooooooooooooooooooooooooo +t4,28 S
— =~ 35 — 27
Ts = f5 o gg S eeeeetiiananeeaeieeeieaenaaa, +ts 4 S
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— = 36 __ 28
Te = t; .35 S e tt . 8
_ - 37 P}
T? = t7 - 37 S ......................... + t7 5 S
— 38 — 24
T8 = t8’ - 38 S ......................... + ta’ 24 S
— 39 — 23
Ty =ty -g9 5 ..., e +ty . S

The powers of S, for any particular T;, increase uniformly until
the highest power is reached. This fact is indicated above by the
dashes between the term of the lowest order and the term of the high-

est order,
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FORTRAN II COMPUTER PROGRAM

GENERAL
The following FORTRAN II computer program has been
developed to calculate the T; coefficients of equation (39) of this

report from data consisting of the parameters o, D, , D., D;, -, ,

9,3 P, Q, Sy, /pgs » handn. The manner in which these data words
are read into the computer is presented under FORTRAN II COMPUTER
PROGRAM INPUT AND OUTPUT INFORMATION of this report. The
values of the coefficients calculated in intermediate steps are printed
as they are computed so that they may be checked at any point of pro-
gression of the program. The appropriate heading is printed imme-
diately above each coefficient printout in order to specify the coeffi-
cients being printed. Full details on printout information is found un-
der FORTRAN II COMPUTER PROGRAM INPUT AND OUTPUT IN-
FORMATION of this report.

FORTRAN II LEGEND FOR INPUT DATA
The FORTRAN II designation for input data words is as follows:

‘nput parameter FORTRAN II name

o AL

D, DE1

D, DE2

D, DE3

o, ALl

as AL2

ag AL3

p P

Q Q



'
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S SO
Yos GAM
h H
n A

FORTRAN II LEGEND FOR COMPUTED VARIABLES

Due to the restrictions on variable names in the FORTRAN II
language, many of the coefficient names were reassigned. The follow -
ing table gives a complete list of the coefficients with their correspond-
ing FORTRAN II designation. In every case, the subscript (1) corre-
sponds to the lowest powe. of S, the highest subscript corresponds

to the highest power of S. For example, D1(1) is the FORTRAN II

name for d;, ., , T9(1) is the FORTRAN Il name for t,, _ ., , etc.
The dimension of each variable is its total number of subscripts.
FORTRAN 11 Lowest Highest _
Coefficient Variable Power of S Power of S Dimension
Name

D, D1 -3 0 4

D, D2 -2 1 4

D, D3 -2 2 5

D, D4 -5 0 6

D, D5 -4 1 6

Dg D6 -3 2 6

D, D7 -2 3 6
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18

-11

Y1

18

-10

Y2

31
48

-18 12
18

-29

Y3
R1B

48

- 19

-28

R2B

44

17

-26

R3B

44

18

-25

R4B

(=] (=] (]
N N N
© - ©
X ™ -
i v -y
] 1 1
M m M
— ™ )
@] @] @

20

-10

G4B

20

10

G5B

20

11

G6B

17

G7B

17

10

G8B
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FORTRAN II LEGEND FOR INTERMEDIATE TERMS
In calculating certain coefficients, it was necessary to utilize

some intermediate terms. The intermediate terms are specified as

follows:
Intermediate = FORTR./\N II Lowest _ Highest
Term Name Power of S Power of S Dimension

D, E, D3E1 -6 3 10
E, D, E4D1P -5 3 9
D, E, D3E2 -9 4 10
D, + D, D12P -3 0 4
E, (D, + D) E412P -4 4 9
D, E, D3E3 -5 5 11
D, + D, D23P -3 1 5
E, (D, + D) "E423P -4 5 10
D, E D3E5 -8 3 12
E, D, E4D4P -7 3 11
D, E; D3E6 -1 4 12
D, + D/ D45P -5 0 6
E, (D, + D;') E445P -6 4 11



- . - o el

E, (Dy + Dg)
D3 E8
D6 + D7'

E4 (DG + D7')

D3 E10
D, + D,

E, (Dg + Dy)

D3ET

D56P

E456P

D3ES8

D67P

E467P

D3E9

D78P

E478P

D3E10

D89P

E489P

D3E11

E4D9

D3BD4

D3E1B

-10

12

11

12

11

12

11

16

16

B 16



T T

h

ol -

A

[ol =
-3 o

D3BD5

D3E2B

D3BD6

D3E3B

D3BD7

D3E4B

D3BD8

D3E5B

D3BD9

D3E6B

D3ETB

D1D3B

D1BD3

D2D3B

D2BD3

R2D1

-10

16

16

16

16

16

16

13

16

13

13

13

‘14

14

14

14

17

B 17
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R1PD2 -11 5 17
R2D2 -9 7 17
R12 -8 5 14
D312K -10 7 18
R1Y2 -18 12 31
R2Y1 -18 12 31
Y2PY3 -29 18 48
Y2Y3P -29 18 48
Y1Y3 -29 18 48
R2PY3 -26 17 44
R2Y3P -26 17 44
R1Y3 -26 17 44
R2D4 -12 6 19
D3F1P -13 6 20
R2D5 -11 7 19
F12 -10 5 16



D3 (—fS +_f4')

D312

R2D6

F23

D323

R2D7

F34

D334

R2D8

F45

D345

R2D9

F56

D356

F67

R2F17

R3G8

-12

-10

-32

-32

10

11

27

21

20

19

16

20

19

16

20

16

16

20

16

16

20

13

60

60

B 19



G78
R478
RI1FT7

R267Z
R3GT

G67
R467G
R1F6
R256Z
R3G6
G56
R456G
R1F5
R245Z
R3G5
G45
R445G
R1F4
R234Zz
R3G4

G34

-32
-33

~-33
-33

-33
-34
-34

-34

-34
-35
-35
-35
-10
-35
-36
-36
-36

-11

27
26

26
26

11
29
25
28
28
10
28
27
27

27

27
26
26

26

17

60

60

60
60

20
63
60
63
63
20
63
63
63
63
20
63

63
63

63

20

B 20
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R434G -36 26 63
R1F3 -37 25 63
R223Z -37 25 63
R3G3 -37 25 63
G23 -12 7 20
R423G -37 25 63
R1F2 -38 24 63
R212Z -38 24 63
R3G2 -38 24 63
G12 -13 6 20
R412G -38 24 63
R1F1 -39 23 63
R2F1P -39 23 63
R3G1 -39 23 63
RAG1P -39 23 63
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FORTRAN II COMPUTER PROGRAM INPUT AND OUTPUT
INFORMATION

Input . The input data which must be punched on cards are the con-
stants @ , D, , D,, D3, a,,0,,2 5, P, Q, S, Ygs, h, n. This data
is punched on four cards.

The first data card will contain « in spaces 1 through 18, D,

in spaces 19 through 36, D, in spaces 37 through 54, and D, in spaces
55 through 72.

The second data card will contain «, in spaces 1 through 18, o,

in spaces 19 through 36, ¢, in spaces 37 through 54, and P in
spaces 55 through 72.
The third data card will contain Q in spaces 1 through 18,

S in spaces 19 through 36, Yy in spaces 37 through 54, and h in spaces
95 through 72.
The fourth data card will contain the value of n in spaces 1

through 18.

The format for the values to be punched in their above assigned
spaces is as follows: The value of the constant is preceded by the
algebraic sign of plus or minus. A decimal point is punched between
the first and second character of the value. The value is followed by
an exponent sign of plus or minus. Following the exponent sign is the

power of the exponent. This format is shown in the example below.

Example:
a = 22.1
algebraic sign exponent
;‘\// #:_/
4 IR
Punch Format for a: + 2. 21 K/\ 0
decimal exponent
point sign
a = -263
Punch Format for a: - 2.63 + 02
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All the constants should be punched according to the example
format and in the extreme right of their allotted spaces.

Output. A descriptive title is printed before each section of the pro-
gram printout. All of these values are printed out in floating point
numbers. This format explanation is the same as the punch format
explanation above.

The first descriptive title is, ""A 1 through A 17." This means
that the following values in this section are the values for A 1 through
A 17. If the first value was - 0.2336111 E + 01, this would be
written in fixed point arithmetic as - 2. 336111, The following
sections of the printout would be interpreted the same as the above

section.
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FORTRAN II SOURCE PROGRAM

The program which defines the operations which the computer is to

do, and which is written by the programmer in the FORTRAN II language is
called the FORTRANII Source Program.

An occasional comment and the inclusion of defining equations to

facilitate the correlation of program variables to report variables will occur

at certain intervals in the source program. This is to be regarded as

supplemental information only and not an integral part of the FORTRAN I1I

instructions., With this in mind and with reference to FORTRAN II Legends

presented earlier in this report, the reader should have little difficulty in under-

standing the following source program.

C
C
C

INSTABILITY QF AN QRTHQTRQPIC CIRCULAR

CQNICAL SHELL SUBJECTED T@® HYDRQSTATIC

PRESSURE AND A CQMPRESSIVE AXIAL FQRCE

DIMENSIQN D1(4), D2(4), D3(5), D4(6), D5(6), D6(6), D7(6), D8(3),
1D9(3), E1(6), E2(6), E3(7), E4(6), E5(8), E6(8), E7(8), E8(8), E9(
28), E10(5), E11(5), D1P(4), D2P(4), D3P(5), D4P(6), D5P(6), D6P(6)
3, D7P(6), D8P(3), DIP(3), D1B(10), D2B(10), D3B(11), E1B(12), E2B(
412), E3B(12), E4B(12), E5B(12), E6B(9), E7B(9), F1B(16), F2B(16),
5F3B(16), F4B(16), F5B(16), F6B(13), F7B(13), F1BP(16), F2BP(16), F3
6BP(16), F4BP(16), F5BP(16), F6BP(13), F7BP(13), R1(14), R2(14), R1
TP(14), R2P(14), Y1(18), Y2(18), Y3(31), R1B(48), R2B(48), R3B(44),

8 R4B(44), G1B(20), G2B(20), G3B(20), G4B(20), G5B(20), G6B(20), G7
9B(17), G8B(17)

DIMENSIQN G1BP(20), G2BP(20), G3BP(20), G4BP(20), G5BP(20), GEBP(2
10), GTBP(17), G8BP(17), T1(60), T2(60), T3(63), T4(63), T5(63), T6
2(63), T7(63), T8(63), T9(63), D3E1(10), E4D1P(10), D3E2(10), D12P(
34), E412P(9), D3E3(11), D23P(5), E423P(10), D3E5(12), E4D4P(11), D
43E6(12), D45P(6), E445P(11), D3E7(12), D56P(6), E456P(11), E3E8(12
5), D67TP(6), E467P(11), D3E9(12), D78P(6), E478P(11), D3E10(9), D89
6P(3), E489P(8), D3E11(9), E4D9(8), D3BD4(16), D3E1B(16), D3BD5(16)
7, D3E2B(16), D3BD6(16), D3E3B(16), D3BD7(16), D3E4B(16), D3BDg(13)
8, D3E5B(16), D3BD9(13), D3E6B(13), D3E7B(13), D1D3B(14), D1BD3(14)
9, D2D3B(14), D2BD3(14), R2D1(17), R1PD2(17), R2D2(17), R12(14)
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DIMENSIGN D312K(48), R1Y2(31), R2Y1(31), Y2PY3(48), Y2Y3P(48), Y1Y

13(18), R2PY3(44), R2Y3P(44), R1Y3(44), R2D4(19), D3F1P(20), R2D5(1

29), F12(16), D312(20), R2D6(19), F23(16), D323(20), R2DT(19), F34(

316), D334(20), R2D8(16), F45(16), D345(20), R2D9(16), F56(16), D35

46(20), F67(13), R2F7(60), R3G8(60), G78(17), R478(60), R1FT7(60),R
5267Z(60), R3G7(60), G67(20), R467G(63), R1F6(60), R256Z(63), R3G6(

663), G56(20), R456G(63), R1F5(63), R245Z(63), R3G5(63), G45(20), R
7445G(63), R1F4(63), R234Z(63), R3G4(63), G34(20), R434G(63), R1F3(

863), R223z(63), R3G3(63), G23(20), R423G(63), R1F2(63), R212Z(63),

9 R3G2(63), G12(20), R412G(63), R1F1(63), R2F1P(63), R3G1(63)

DIMENSIQN R4G1P(63), Y1P(18), Y2P(18), Y3P(31), R245(16), R2F1(16)

CQMMON SAL, CAL, SCAL, TAL,6Al, A2, A3, A4, A5, A6, AT, A8, A9, Al

10, All, Al12, A13, Al4, Al5, Al6, Al7, B1l, B2, B3, B4, B5, B6, B7,

2B8, B9, B10, Bll1l, B12, B13, Bl4, B15, C1, C2, C3, C4, C5, C6, CT,

3Cs8, €9, C10, C11, C12, C13, Ci4, C15, C16, C17, C18, C19, C20, ASQ

4, A4H, ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9, ST10, ST11l, ST
512, ST13, ST14, ST15, ST16, ST17, ST18, ST19, ST20, ST21, ST22, ST
623, ST24, ST25, ST26, ST27,ST28, ST29, ST30, ST31, ST32, ST33, ST

734, ST35, ST36, ST37, ST38, ST39, ST40, ST41, ST42, ST43, ST44, ST

845, D1, D2, D3, D4, D5, D6, D7, D8, D9, E1, E2, E3, E4, E5, E6, E7

9, E8, E9, E10, E11, D1P, D2P, D3P, D4P, D5P, D6P, D7P, D8P, D9P
COMMQ@N D1B, D2B, D3B, E1B, E2B, E3B, E4B, E5B, E6B, E7B, F1B, F2B,

1F3B, F4B, F5B, F6B, F7B, F1BP, F2BP, F3BP, F4BP, F5BP, F6BP, FTBP,
2 R1, R2, R1P, R2P, Y1, Y2, Y3, R1B, R2B, R3B, R4B, G1B, G2B, G3B,
3G4B, G5B, G6B, G7B, G8B, GIBP, G2BP, G3BP, G4BP, G5BP, G6BP, GIBP,
4 G8BP, T1, T2, T3, T4, T5, T6, T7, T8, T9, D3El1, E4D1P, D3E2, DI12P
5, E412P, D3E3, D23P, E423P, D3E5, E4D4P, D3E6, D45P, E445P, D3ET,
6D56P, E456P, D3ES, D67P, E467P, D3E9, D78P, E478P, D3E10, D89P, E4
789P, D3E1l, E4D9, D3BD4, D3EIB, D3BD5, D3E2B, D3BD6, D3E3B, D3BD7,
8 D3E4B, D3BD8, D3E5B, D3BD9, D3E6B, D3E7TB, D1D3B, D1BD3, D2D3B, D2
9BD3, R2D1, R1PD2, R2D2, R12, D312K, R1Y2, R2Y1l, Y2PY3, Y2Y3P, Y1Y3
CQOMMON R2PY3, R2Y3P, R1Y3, R2D4, D3F1P, R2D5, F12, D312, R2D6, F23,
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1 D323, R2D7, F34, D334, R2D8, F45, D345, R2D9, F56, D356, F67, R2F
27, R3G8, G78, R478, R1F17, R267Z, R3G7, G67, R467G, R1F6, R256Z, R3
3G6, G56, R456G, R1F5, R245Z, R3GH, G45, R445G, R1F4, R234Z, R3G4,
4G34, R434G, R1F3, R223Z, R3G3, G23, R423G, R1F2, R212Z, R3G2, Gl12,
5 R412G, R1F1, R2F1P, R3G1, R4G1P

READ INPUT TAPE 5, 1, AL, DE1, DE2, DE3, ALi, AL2, AL3, P, Q, SQ,
1GAM, H, A

WRITE QUTPUT TAPE 6, 402, AL, DE1, DE2, DE3, AL1, AL2, AL3, P, Q,
1S®, GAM, H, A

SAL = SINF(AL)

CAL = CQSF(AL)

SCAL = ((SINF(AL))*(SINF(AL))) ((C@SF (AL))

TAL = SAL/CAL

Al = -(3.0%P*SQ#SAL * %2)/(2.0*AL1*CAL)

A2 = AL2*SAL/AL1

A3 = -SAL

A4 = (2. 0%*P*SQ*SCAL)/AL1

A5 = Q/(6.2831852*SQ*AL1*CAL)

A6 = A3

AT = (P*SQ*SCAL)/AL1

A8 = (3. 0%P*SQ®)/(2. 0¥AL1*CAL)

A9 = -(AL3/(AL1*SAL))

A10 = -((3. 0 %P#S@*TAL)/(2. 0*AL1))

All = (AL2 + AL3)/AL1

A12 = -((AL1*¥GAM) + AL3)/AL1

Al13 = (P*SQ+TAL)/(2. 0+*AL1)

Al4 = (3. 0*P#*SQ*SAL)/(2. 0*ALl)

A15 = -(AL2*CAL)/AL1

A16 = GAM+CAL
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Al17 = -(P*SQ*SAL)/AL1l
Bl = (2. 0%P*SQ*TAL)/AL1

B2 = -(AL2 + AL3)/AL1

B3 = -((GAM *AL1) + AL3)/AL1
B4 = (P*SQ*TAL)/(2. 0*+AL1)

B5 = -(2. 0%P*SQ*SCAL)/ALLl

B6 = (AL3*SAL)/AL1

BT = -(AL3*SAL)/AL1

B8 = (2. 0%SQ*P*SCAL)/AL1

B9 = Q/(6. 2831852 *SQ*AL1*CAL)

B10 = -(AL3*SAL)/ALl

B11 = (P*SQ*SCAL)/AL1

B12 = (3. 0%P*SQ}/(2. 0%AL1*CAL)

B13 = -(AL2)/(AL1*SAL)

]

Bl4 = -(2. 0%P*SQ)/AL1

B15 = (AL2)/(TAL*AL1)

C1

[H

-(AL2*CAL)/AL1

C2

[

(5. 0+#P*SQ*SAL)/(2. 0% AL1)

C3

§i

-(GAM *CAL)

fi

C4 = (P*SQ*SAL)/AL1

C5 = -(AL2)/(TAL*AL1)

"

C6 = (2. 0*+S@*P)/AL1
CT = ((3. 0*P*SQ*CAL*CAL) + (2. 0P *SQ*SAL*SAL))/(2. 0*AL1*CAL)

C8 = (AL2*CAL*CAL) / (AL1*SAL)
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C9 = (2. 0P *SQ*SCAL)/AL1

C10 = (H*H*DEZ*SAL)/(IZ. O*SQ)*SQ)*DEI)

C11 = B9

Cl12 = C9/2.0

C13 = -C10

C14 = B12

C15 = ((H*H*GAM *DE1)+ (H*H*DE2) + (2. 0 *H*H*DE3)\/(6. 0+SQ *SQ «DE1 *S

1AL)
C16 = (2. 0*H*H*SAL)/(12. 0:<3Q*SQ)
Cl7 = _((GAM *H*H :::DE]_) + (2. 0+«H=H ,kDE3))/(6. 0>}<S(D :::S@ *DE1 >:<SAL)

C18 = (H*H=*SAL)/(12. 0%SQ *SQ)

C19 = -C17

C20 = (H*H*DE2)/(12. 0%SQ® *SQ*DE1 *(SALx**3))

WRITE QUTPUT TAPE 6, 404 |

WRITE QUTPUT TAPE 6, 405, Al, A2, A3, A4, A5, A6, AT, A8, A9, A10,
1 A11, A12, Al13, Al4, Al5, Al6, Al7

WRITE QUTPUT TAPE 6, 407

WRITE QUTPUT TAPE 6, 405, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10,
1 B11, B12, B13, Bl4, B15

WRITE QUTPUT TAPE 6, 408

WRITE QUTPUT TAPE 6, 405, C1, C2, C3, C4, C5, C6, CT7, C8, C9, C10,
1 C11, C12, C13, C14, C15, C16, C17, C18, C19, C20

ASQ = A*A

A4H = ASQ*ASQ
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ST1 = (C20*ASQ) - C15

ST2 = C10 - (ASQ*C17)
ST3 = C13 - (ASQ*C19)
ST4 = C5*C5

ST5 = (C14*ASQ) - C7

ST6 = (C5*A10) + (C6 *A11)
ST7 = (C5*A13) + (C6*A12)
ST8 = A2 - (A9 *+ASQ)

ST9 = 2. 0*xCh5 *C6

ST10 = C2%C5
ST11 = C1%C6
ST12 = Al - (A8 *ASQ)
ST13 = C6*C6
ST14 = C3 *C5

ST15 = C5%A12

ST16 = C5*All
ST17 = C5*A13
ST18 = C6:*+A13

Since the appearance of the program variables ST1, ST2, etc. will
undoubtedly appear confusing to the unsuspecting reader an explanation by
example will be given.

Consider the variable D1 which is defined earlier in the report as follows:

— -1 - = e reki
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Substituting for the terms in terms of previously defined elements, the
equation becomes:

=2

1 —
D1=(01§+Cz) [(-a,n-a,ns) = —(—anné—amn) ('Csn-l-‘ncs)]
s s s

2
S

#(- %) (an+ayns) (-cons-ncy)+ [(d- an?) L
- s S
2 1 2
+( a; -ay n%] (-csn=-nc)
S

A complete algebraic expansion will result in an equation consisting of 28

terms as follows:

2 2 2
D = - C1812G My _ Ca,Gn _ cjapgcn’ . cyagzgcgn
—3 —2 —2 =
S s S s
csn’c, a csnc,a cs n’c,a c; n° ¢, a
_ 5 1% G 28n _ Cs 18310 _ G Cy3y
—3 =2 =2 =
s s S s

2
- Ca;n ¢

L i 2

2
c,a,3n"¢q

+ + + +
-—3 —2 D —
s ) ) s
2 2 2 2 2
+ 22C n° 4 2c¢ynicga, 4 8¢ n° . agn cs n
53 2 3 3
- 9 2 2 4 2 2 9
ag N C;n%cg agn cg a, ¢ n a; Cg Cg N
S S s s
2 2 a, n® .2 2a,n* ¢, c
- < 5 4
+ aj;c¢n - B___5 g6 = agh” cq
2
s s
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A grouping of coefficients will be:
Term Coefficient
— -z 2 2 2 2 2 4 2
S =Ci@;CMN -cyn Cc;a;;tap,n cgc,ta,cg N o-agn ey
5 -2 2 2 2 2 + 2

T Cp8p;p M G =GN Cp8y ~C N Cya,5-Ca;N CTCaph C

+9 2 9 4 + 2 2 4 2

CsN Ccga,-2a,n ccgta;c n -a; n C

— =1 b2 2 2 2 2 2
s - CsMN Cad;-Chapn Cg-Cya,;pn cgtec,asn cgta,cg n
4 2 4 2 2
-agn - -
oM Ccg - 2a3n cgegt2c5C5a, N -CyC5aN
-~ 0 2 2 2 4 2
S -Cyapn cgta;cg n -an cq

As mentioned earlier the subscript (1) corresponds to the lowest power of
5 the highest subscript corresponds to the highest power of s, With this
notation in mind it is clear that D1(1) is the coefficient of § ~ %, D1(2) is the

=2

coefficient of s , etc. Referring to the FORTRAN II source program the

variables are written:

D1(1) = (ST4*ASQ=*(A2 - (A9*ASQ))) - C1*C5*A11*ASQ )
D1(2) = ASQ*(((ST4*(Al - (A8+*ASQ)))) + (ST9 *ST8)
- (C1%ST6) - (ST10%A12) + (ST11*A12))
D1(3) = ASQ*((C6*C6*ST8) + (ST9*ST12) - (ST11*A10)
- (C2%ST6) - (ST10%A13) + (ST11*A13))
D1(4) = ASQ#*((ST13%ST12) - (C2*C6*A10))

Substituting for the ST - terms as defined in the SOURCE PROGRAM and

expanding, it is seen that the terms are as follows:
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D1(1) - coefficient of &

D1(2) - coefficient of 5§ 2
D1(3) - coefficient of 5~ 1
D1(4) - coefficient of §°©

With the aforementioned example for the solution of the term D, ,

it should be intuitively obvious to the reader that the ST - terms are
characteristic terms employed to facilitate the solution of equations de-
fining D1(1) through D9(3).
The reader may now proceed with the SOURCE PROGRAM,

D1(1) = (ST4*ASQ*(A2 - (A9*ASQ))) - (C1*C5*A11*ASQ)

D1(2) = ASQ*(((ST4*(A1 - (A8*ASQ)))) + (ST9 *ST8) - (C1*ST6) - (ST1
10*+A11) - (ST10*A12) + (ST11*A12))

D1(3) = ASQ*((C6*C6 *ST8) + (ST9*ST12) - (ST11*A10) - (C2*ST6) - (S
1T10*A13) + (ST11%*A13))

D1(4) = ASQ*((ST13%*ST12) - (C2*C6 *A10))

D2(1) = ASQ*((ST4*A3) - (ST14%A11) - (C1%ST15) - (ST14*A12))

D2(2) = ASQ*((ST9 *A3) + (ST4*A4) - (C3*STB) - (C4*C5*A11) - (C1*S
1T7) - (ST10%A12) - (C4%ST15) - (ST14*A13) - (C4*ST15))

D2(3) = ASQ*((ST9*A4) + (ST13*A3) - (C3*C6xA10) - (C4*ST6) - (ST11
1%A13) - (C2%STT) - (C4*STT) - (C4*C5*A1%))

D2(4) = ASQ*((ST13*A4) - (C4%C6*A10) - (C2*C6*A13) - (C4*C6*A13))
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D3(1) = ST4*ASQ*Ab

D3(2) = ASQ*((ST4 *AB}H(ST9*A5) - (ST14*A12))

D3(3) = ASQ*((ST9*+A6) + (ST4*AT) + (ST13 *A5) - (C3*STT) + (C4*ST15
1))

D3(4) = ASQ*((ST9*AT) + (ST13*A6) - (C3*C6*A13) - (C4*STT))

D3(5) = ASQ*((ST13 *AT) - (C4*C6*xA13))

D4(1) = A4H*((ST16%ST1) + (ST15%ST1) - (3. 0*ST15*ST1))

D4(2) = A4H*ST1*(ST6 + ST17 - (3. 0%STT))

D4(3) = ASQ*((-ST4*A15) + (ASQ*C6+A10*ST1) + (ST16*C8) + (ST15 * C8)
1 - (3.0%ASQ*C6*A13*ST1) - (ST15 * C8))

D4(4) = ASQ*((-ST4%A14) - (ST9*A15) + (C8*ST6) - (ST16 *ST5) + (C8*
1ST17) - (ST15%ST5) - (C8 *STT))

D4(5) = ASQ*((-ST9 *A14) - (ST13*A15) + (C 8 %C6 *A10) - (ST5 *ST6) - (

1ST17*ST5) - (C6=C 8*A13))
D4(6) = -ASQ*((ST13*A14) + (C6*A10=ST5))
D5(1) = ASQ*(((A11 + A12)*«C5*ST2) + (ASQ*ST15 *ST1) - (2. 0*ST15*ST2

1))
D5(2) = ASQ*(((ST6 + ST17 - (2. 0*ST7))*ST2) + (ASQ*ST1*STT))
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D5(3) = ASQ*

1ST15))

B 34

((-ST4*A16) + ((A10 2. 0*A13)*C6*ST2) + (ST18%ST1) + (C8*

D5(4) = ASQ*((-ST4*A17) - (ST9*A16) + ((All + (2. 0%A12)) *C5*C9) +

1(C8*ST7) - (ST15*ST5))

D5(5) = ASQ*

((-ST9*A17T) - (ST13*+A16) + (C9::ST6) + (ST17*C9) + (ST1

1€ *C8) - (ST5*STT) + (C9*STT))

D6(2) = ASQ*

D5(6) = ASQ*((-ST13 *A1T) + (C6*+C9*A10) - (ST18 *ST5) + (ST18 *C9))

D6(1) = ASQ*((ST16*ST3) + (ST15*ST2))

<((ST3*ST6) + (ST16C11 + (ST17%ST3) + (ST15*C11) + (S

1T2*STT) - (STT*ST3))

D6(3) = ASQ+

1(ST18 *ST3))

D6(4) = ASQ*

((C6*A10%ST3) + (C11*ST6) + (ST17*C11) + (ST18 *ST2) -

«((C6%+C11%A10) + (ST16+*C12) - (ST15%C12) + (ST15 *C9) +

1(2. 0%ST15 *C12))

D6(5) = ASQ*
D6(6) = ASQ*
D7(1) = ASQ*
D7(2) = ASQ*
D7(3) = ASQ*
D7(4) = ASQ*

D7(5) = ASQ*

D7(6) = ASQ

D8(1) = ASQ*

D8(2) = ASQ

((C12%ST6) + (ST17+C12) + ((C9 + (2. 0%C12)) *STT))
((C6+C12%A10) + (C6*A13%(C9 + (2. 0C12))))
((ST16<C16) + (ST15*C16) + (ST15 *ST3))

((C16 *ST6) + (ST17+C16) + (ST3*STT) + (ST15*C11))
((C6+A10=C16) + (ST18 *ST3) + (C11 *STT))
((C11%ST18) + (C12*ST15))

C12*STT

*C12*ST18

((C18 %ST16) + (C18 *ST15) + (C16 *ST15) + (C18 *ST15))

#((C18 *ST6) + (C18+ST17T) + (C16 *STT) + (C18 *ST7))



D8(3) = ASQ*((C6*A10%C18) + (C16 *ST18) + (C18 *ST18))

D9(1) = ASQ*C18 *ST15

D9(2) = ASQ*('18*STT

D9(3) = ASQ*C1¢ *ST..8
WRITE QUTPUT TAPE 6, 410
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
WRITE QUTPUT TAPE 6, 405,
ST19 = C1x*ChH

ST20 = A11 + A12

D1
D2
D3
D4
D5
D6
D7
D8

D9

ST21 = C5*+C6 *B9 + B10*C5*C5

ST22 = A13*%B9 + A12*B10
ST23 = A11*B10 + A10* B9

ST24 = B6 - ASQ*B13

ST25 = C5*C6*B10 + B11*C5 *C5H

ST26 = 2. 0*+C5*C6 *B7 + C5*C5*B8
ST27 = A13*B10 + A12*B11
ST-3 = A11*B11 + A10*B10
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ST2¢ = B5 - ASQ*B12

ST30 = 2, 0xC5*xC6*B8+ C6xC6*B7

)
il

ST31

it

Al13+*B11 + A10*Bl11

ST32 = C2+ 2.0*C4

tl

ST33

A14*Ch + A15*C6

ST34 = - 2,0x%ChH

1l

ST35 CH*CH*A14 + 2, 0=C5*C6 *A15

ST36 = C6*A14

fi

ST37 = A17*C5 - A16*C6

ST38 = 6.0*(ST2 - ASQ*ST1)

ST39 = C5*C5 *A17 + 2. 0xC5*C6+*A16
ST40 = 2. 0+C5 *C6*A17 + ST13*A16
ST41 = ST1*ASQ - 4.0%ST2 + 2.0%ST3

ST42 = 2, 0%(C9 + C12)

ST43 = ST2 - 2. 0*+ST3
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ST44 = C9 + 4,0%C12

ST45 = C16 + 2. 0= C18

The reader's attention is directed to the terms ST19 through ST45,
These terms are employed to facilitate the solution of equations defining
E1(1) through E11(4). It is felt that an example for E1(1), similar to the
example for D1(1) stated earlier, would serve no purpose at this point in
the reader's understanding of the SOURCE PORGRAM,

The reader may now continue with the SOURCE PROGRAM,

E1(1) = ASQ*((2.0%ST4*B9 *ST8) - (2. 0+ST19 *BY *ST20) + (2. 0*ST19 *A12

1*B9))

E1(2) = ASQ*((ST8 #(2. 0%ST21 + ST4 *BT)) + (ST12%2, 0%xST4 *B9) + (2. 0*

1C1*(ST15*B10 + B9 *STT)) + (ST4*A12*B2*ASQ) + (C1*C5 %(-2. 0*(ST22 -S

2T23) - A11*B7 + A12%ST24)) - (2. 0%C2%C5 *B9 *ST20))

E1(3) = ASQ*((ST8 *(2. 0*ST25 + ST26)) + (2. 0«C1*(ST15*B11 + B10*STT

1+ ST18+B9)) + (ST12x(2. 0%ST21 + ST4 *BT7)) + (B2 *(C5*STT + C6 *ST15)

2*ASQ) + (C1%(-2. 0%C5*(ST27 + ST 28))) + (C1*((ST15*ST29) + (ST7 *ST2
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34) - (B7 #ST6) ~ (ST16+B8))) + (C2+C5 *(((-2. 0*+ST22+ 2. 0*ST23)) - A
411 +B7 + A12+ST24)))
E1(4) = ASQ*((ST8*(ST9*B11+ST30)) + (ST12*(2. 0*+ST25+ ST26)) + (
12. 0#C1%(B11*STT7+ST1¢ *B10)) + (ASQ*B2*(ST17 *C5 + C6 *STT)) + (ASQ *
2B1 #(C5 *STT+ ST15 *C6)) + (C1 *(-2, 0*C5 *(ST31+ STT *ST29) + ST14 *ST2
34 - B8*ST6 - C6+A10*BT)) + (C2%(-2, 0xC5 *(ST2T+ ST28) + ST15 *ST29
4+ STT*ST24 - B7*ST6 - C5*A11%B8)))
E1(5) = ASQ*((ST8*ST13*B8) +(ST12*(ST9*B11+ST30)) + (ASQ*(B2*ST
113 #A13+ B1*(C5*ST18 + C6 *STT))) + (ST11*(A13 *ST29 - A10+B8)) +(C
22#(~2. 0*C5 *(ST31+STT*ST29)) + (ST18 *ST24) - (B8 *ST6) - C6*A10*B
37+ 2.0%C1*ST18 *B11)
E1(6) = ASQ*(ST12*ST13 *B8 + B1 #*ST13 *A13 *ASQ+ C2#C6 *(A13 *ST29 - A1
10+B8))
E2(1) = ASQ*(2. 0+ST4*B9 *A3 - 2. 0%C5 *B9 *ST20 *C3 - 2, 0ST19 *A12*B9)
E2(2) = ASQ*(A3%(2.0 *ST21+S5T4 *BT)+ A4 *2, 0%xST4 #B9 +ST4*A12%B3 *A
1SQ+S8T14 %(-2. 0%ST22+ 2, 0ST23 - A11 *B7T+A12%ST24) - 2. 0%C4 *C5 *B
29%S7T20 - 2, 0%C1*(ST15 *B10 + B9 *STT))
E2(3) = ASQ*(A3%(2. 0*ST25+ ST26) + Ad %(2. 0*ST21+ST4 *B7)+ B3 *(C
15 #ST7+ C6 *ST15) *ASQ+ B4 *ST4*A12*ASQ+ C3 (-2, 0*C5 *(ST27+ ST28,
2+ ST15 %ST29+ STT #ST24 - BT *ST6 - ST16 *B8) + C4 *C5 *(2, 0+(-ST22+ S
3T23) - A11*B7+A12+%ST24) - 2. 0%C1 *(ST15 *B11+ B10 *ST7+ ST18 *B9))
E2(4) = ASQ*(A3*(ST9*B11+ ST30)+ A4*(2, 0+ST25+ ST26) + ASQ *(B3 *
1(C5 *ST18+ C6 *STT) + B4 *(C5 *STT+ C6 *ST15)) + C3 *(-2. 0%C5 *(ST31 +

2 ST7+#ST29)+ST18 *ST24 - B8 *ST6 - C6 *A10 *BT) + C4*(-2. 0xC5 *(ST27 +
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3 ST28) + ST15*ST29+ STT*ST24 - BT *ST6 - ST16+B8) - 2. 0%C1 *(B11 *ST
47 + ST1¢ +*B10))

E2(5) ~ ASQ*(A3*ST13 *B8+ A4 *(ST9*B11+ST30) + ASQ*(B3*ST15 *A13 +
1 B4>*(C5*ST18 + C6 *STT))+ C3 *C6*(A13 *ST29 - A10*B8) + C4 *(-2. 0*C5 *
2(ST31+STT7*ST29)+ST18 *ST24 - B8 *ST6 - C6 *A10+B7) - 2, 0%ST11*A13
3+B11)

E2(6) = ASQ*(A4+ST13 *B8 + B4 *ST13 *A13 *ASQ+ C4 *C6 *#(A13*ST29 - A10 *
1B8) %2. 0)

E3(1) = ASQ*ST4*B9*A5%2,0

E3(2) = ASQ*(2. 0+A6*ST4*B9+ A5 *(2. 0+ST21+ ST4 *BT) + C1 *ST15 *BY)

E3(3) = ASQ*(2. 0*AT *ST4 *B9+ A6 *(2. 0*ST21+ST4 *B7) + A5 *(2. 0*%ST25
1+ST26)+ C1*(ST15*B10+ B9 *STT)+ ST32 *ST15 *B9)

E3(4) = ASQ*(AT*(2. 0%ST21+ ST4*BT)+ A6 *(2. 0%ST25+ ST26) + A5 #(S
1T9*B11+ST30) + C1*(ST15*B11 + B10*ST7 +.ST1 .*B9) + ST32*(ST15 *B1
20+ B9 *STT))

E3(5) = ASQ*(AT %(2. 0*ST25+ ST26) + A6 *(ST9*B11+ ST30)+ A5 *ST13 *
1BS+ C1*#(B11*#ST7+ST18 *B10) + ST32*(ST15*B11+ B10*ST7+ST18 *B9)

2)

E3(6) =~ ASQ*(AT7T*(ST9*B11+ ST30)+ A6 *ST13*B8+ST11*A13+B11+ST3
12%(B11*=ST7+ ST18 *B10))

E3(7) = ASQ*(AT*ST13*B8+ST32*ST18 *B11)

E4(1) = ASQ*C3 *ST15 *B9

E4(2) = ASQ*(C3#(ST15 *B10+ B9*STT7)+ C4 #ST15 *B9)

E4(3) = ASQ*(C3*(ST15B11+ B10*ST7+ ST18 *B9) + C4 *(ST15 *B10+ B9
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1%ST7))

E4(4) ~ ASQ*(C3%(B11*ST7+ST18*B10) + C4*(ST15 *B11+ B10*ST7+ST
118 +B9))

E4(5) = ASQ*(C3*ST18*B11+C4 *(B11*ST7+ST18 *B10))

E4(6) = ASQ+*C4*ST18 *B11

E5(1) A4H*(2.0+C5+*B9*ST20*ST1+12. 0*ST1+ST15 *B9)

E5(2) = A4H*ST1*(-C5*(-2, 0%(ST22 -ST23) - A11*B7+A12*ST24) + 12
1. 0%(ST15 *B10+ B9 *STT))

E5(3) = ASQ*(-2. 0%A15%ST4*B9 - ST1*(~2, 0*C5 *(ST26+ ST28) + ST15 *S
1T29 + ST7*ST24 - BT *ST6 - ST16*B8) - 2, 0%*C{*C5 *B9 *ST20+ 12, 0 +ASQ*
2ST1*(ST15*B11+ B10*ST7+ ST18 *B9)+ 2. 0 *C8 *ST15 *B9)

E5(4) = ASQ*(-2.0*C5*(B10*A15*C5+ B9 #ST33) - ST4*A 12 +B15 *ASQ - ST4
1*+A15%B7 - (ST1%*(-2. 0%C5*ST31+STT *ST29+ ST18 *ST24 - B8 *ST6 - C6 *

2A10%BT)+(13%C5*(-2, 0%(ST22 - ST23) - A11 *BT7+A12%ST24) + ST5 *2.

410+ B9 *STT))

E5(5) = ASQ*(ST34*(B11+A15 *C5+ B10+ST33+ BY *C6 +A14) - ASQ *(B15 *(
1C5 #STT+ C6 *ST15) + B14 #ST4 #A12) - BT #ST35 - B8 *ST4 +A15 - (ST1*C6 *
2(A13 +ST29 - A10 *B8) + C8 %(ST34 *(ST27+ ST28) + ST15 *ST29+ STT *ST2

34 - BT *ST6 - ST16 *B8) - ST5 *C5 (-2, 0*(ST22 - ST23) - A11*B11+A12

5¢ +B9))
E5(6) = ASQ*(ST34*(B11+ST33+B10*ST36) - ASQ *(B15 *(C5 *ST18 + C6 *S

1T7)+ B14 #(C5*STT7+ C6 *ST15)) - BY *(ST9*A14+ST13%A15) - B8 *(ST4 *
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2A14+ST9*A15) - (C8*(ST34*ST31-+ STT*ST29+ST18 *ST24 - B§ *STE -
3C6+A10+BT) - ST5#(ST34*+(ST2T+STZ )+ST15+ST29+ STT *ST24 - BT %S
4T6 - ST16 #+B8)) + 2. 0 #*C8*(B11*ST7+ ST18 *B10))

E5(7) = ASQ*(-ST9*A14 *B11 - ASQ*(B15 *ST13 *A13+ B14 *(C5 %ST18 + C6 *
1STT)) - BT*ST13 *A14 - B8 *(ST9*A14+ ST13 *A15) - (C6 *C8 *(A13 *ST29 -
2 A10* B8)- ST5 *(ST34 *ST31+ STT*ST29+ ST18 *ST24 - B§ *ST6 - C6 *A10
3%B7))+ 2. 0%C8*ST18 *B11)

E5(8) = ASQ*(-ASQ*B14*ST13*A13 - B8 *ST13 *A14 + C6 *ST5 *(A13 *ST29 -
1A10+B8))

E6(1)

8l

ASQ >:<(ST2 x2, 0*%C5H *B9 *ST20+ 6. 0xST15 *B9 >;<(ST2 - ASQ >::ST1))

E6(2) = ASQ*(-C5*ST2(-2. 0%(ST22 - ST23) - A11 BT+ A12%ST24) + 6.
10%#(ST2 - ASQ*ST1) *(ST15 *B10+ B9 *STT))

E6(3) = ASQ*(ST34*C5*A16 *B9 - ST2*(ST34 *(ST27+ ST )+ ST15 *ST29
1+ STT7*ST24 - BT *ST6 - ST16 *B8)+ 6. 0+(ST2 - ASQ*ST1) *(ST15*B11+ B
210 =STT7+ ST1C *B9) + ST34 xC8 *A12 *B9)

E6(4) = ASQ*(ST34 (B9 * ST37 + B10*C5 *A16) - B7*ST4*A16 - (ST 2 *(ST34
1%ST31+STT7*ST29+ ST18*ST24 - B8 *ST6 - C6*A10 BT+ ST34 *C9 *B9 *ST
220) + ST38 #(B11*ST7+ ST18 *B10) - 2. 0%C8 *(ST15 *B10+ B9 *ST7))

E6(5) = ASQ*(ST34 *(B9*C6*A17+ B10*ST37+B11+C5%A16) - BT *ST39 -
1B8 «5T4*#A16 - (C6 *ST2*(A13 *ST29 - A10%B8)) + C9 *C5 (-2, 0%(ST22 - ST2
23) - A11%B7+A12%ST24) + ST3{ *ST18 *B11 - 2, 0%C8 *(ST15 *B11+ B10 %S
3T7+ST18 *B9))

E6(6) = ASQ*(ST34#(B10+C6 *A17 + B11 * ST37) - B T * STA0 - B8 » ST39 - C9

1+(ST34*(ST27+ ST28) + ST15 *ST29+ ST7 *ST24 - BT #ST6 - ST16 *B8) -



B4:
22, 0#C8%(B11%ST7+ ST18 *+10))

E6(7) = ASQ7#(-ST9*A17*B11 - BT*ST13 *A17 - B8 *ST40 - C9 *(ST34 *ST31
1+ ST7#ST29+5T18 *5T24 - B8 *ST6 - C6 *A10*BT7) - 2, 0%C6 *C8*A13 *B11)

E6(8) = ASQ*(-B8*ST13*A17 - C9C6 *(A13 *ST29 - A10 *B8))

ET7(1) = ASQ*(ST3#2 {#*C5*B9 *ST20+ (ST1*ASQ - 4. 0%*ST2+ 2, 0*ST3) *ST
115 *«B9)

E7(2) = ASQ*(-ST3*C5 *(-2. 0*(ST22 - ST23) - A11*B7+A12+*ST24) - C1
11#ST34 *B9 *ST20+ ST41*(ST15 *B10+ B9 *ST7))

E7(3) = ASQ*(-ST3*(ST34 *#(ST27+ ST28) + ST15 *#ST29+ STT *ST24 - BT %
1ST6 - ST16 *B8) - C11*+C5 *(-2. 0*(ST22 - ST23) - A11*BT7+ A12*ST24)+
25T41*(ST15*B11+ B10*ST7+ ST18 *B9) + C8 *ST15 +B9)

ET(4) = ASQ*(-ST3*(ST34 *ST31+ STT7 *ST29+ ST18 *ST24 - B8 +ST6 - C6 *
1A10%BT) - C11 %(ST34 *(ST27+ ST28) + ST15 *ST29 + ST7 *ST24 - B7 %ST6
2- C5*A11%B8)+ 2, 0%C5*C12*B9 *ST20+ ST41 *(B11*ST7+ ST18 *B10)+ C8
3 #(ST15*B10+ B8 *STT) + (ST42 - ST5) *ST15 *B9)

E7(5) = ASQ*(-ST3#C6 *(A13*+ST29 - A10*B8) - C11%(ST34 *ST31+ STT *ST
129 + ST18 *ST24 - B8 *ST6 - C6 *A10*BT) - C5*C12 (2 0+(ST22 -ST23)

2- A11*B7+A12%ST24)+ST41*ST18 *B11+ C8%(ST15 =:<A11+ B10#ST7+ ST
31{ *+B9) + (ST42 - ST5) *(ST15 *B10+ B9 *ST7))

E7(6) = ASQ*(-C11*C6 *(A13 *ST29 - A10 *B8) - C12*(ST34 *(ST27 + ST28)
1+ ST15*ST29+ STT*ST24 - BT*ST6 - ST16 *B8) + C8*(B11*ST7+ST18*B
210) +(ST42 - ST5)+(ST15 *B11+ B10*ST7 + ST18 *B9))

E7(7) = ASQ#*(-C12%(ST34*ST31+ST7*ST29+5ST18 %ST24 - B8 *ST6 - C6 *

1A10+BT7) + C8*ST18*B11+ (ST42 - ST5) *(B11*ST7+ ST18 *B10))
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E7(8) = ASQ#*(-C12*C6 *(A13*ST29 - A10*+B8) +(ST42 - ST5) *ST18 *B11)

E8(1) = ASQ*(2.0*C16*C5 *B9 *ST20+ ST43 *ST15 *B9)

E8(2) = ASQ*(-C16 *C5 (-2, 0*(ST22 ~ST23) - A11*B7T+A12*ST24)+ ST
143 *(ST15 *B10+ B9 *STT))

E8(3) = ASQ#(-C16 *(ST34 *(ST27+ ST28) + ST15 *ST29+ STT7 *ST24 - BT *
1ST6 - ST16%B8) + ST43 *(ST15 *B11+ B10*ST7 + ST18 *B9))

E8(4) = ASQ*#(-C16 #(ST34 *ST31+ STT *ST29+ ST18 *ST24 - B8 *ST6 - C6 *

1A10 #B7)+ ST43 *(B11 *STT7+ST18+B10) + ST44 *ST15 *B9)

1T15*B10+ B9 *STT))
E8(6) = ASQ*(ST44*(ST15*B11+B10*ST7+ ST18*B9))
E8(7) = ASQ*ST44 *(B11*STT7+ST18+*B10)
E8(8) = ASQ*ST44*ST18%B11
E9(1) = ASQ*(2. 0%xC18*C5 *B9*ST20+ ST3 *ST15 *B9)

E9(2) = ASQ*(-C18*C5*(-2. 0%(ST22 - ST23) - A11*B7+A12%ST24)+ ST

E9(3) = ASQ*(~C18%*(ST34 *(ST27+ ST28) +ST15 *ST29+ STT *ST24 - BT *
1ST6 - ST16%B8)+ST3 *(ST15*B11+B10*ST7+ST18*B9)+ C11*(ST15 *B1
20 + B9 *#STT))

E9(4) = ASQ#*(-C18*(ST34*ST31+ STT*ST29+ ST18*ST24 - B8 *ST6 - C6 *
1A10 #BT) + ST3 *(B11 +ST7+ ST18+B10) + C11 #(ST15 *B11+ B10*ST7 + ST1
28 *B9) + C12 *ST15%B9)

E9(5) = ASQ*(-C18%(C6 *(A13+ST29 - A10*B8))+ST3+ST18*B11+C11 (B

111#STT7+ST18%*B10)+ C12*(ST15 *B10+ B9 *STT))
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E9(6) - ASQ+*(C11#%ST18%B11+C12%(ST15*B11+B10*STT+ST18*B9))
E9(7) = ASQ*C12({B11*STT+ ST18*B10)
E9(8) = ASQ*C6 *C12*A13 *B11
E10(1) = ASQ*ST15 *B9 *ST45
E10(2) = ASQ *ST45 #(ST15 *B10+ B9 *STT)
E10(3) = ASQ*ST45 *(ST15 *B11+B10*ST7 + 5T18 *B9)
E10(4) = ASQ*ST45*(B11*ST7+S5T18*B10)
E10(5) = ASQ*ST18+%B11*5T45
E11(1) = ASQ*ST15 *B9*C18
E11(2) = ASQ*C18+*(ST15 *B1C+ B9 *STT)
E11(3) = ASQ*C18%(ST15 *B1:1+ B10*ST7+ST18 *B9)
E11(4) = ASQ*C18%(B11+ST7+ST18*B10)
E11(5) = ASQ*ST18%B11x*C18
WRITE QUTPUT TAPE 6, 413
WRITE QUTPUT TAPE 6, 405, E1
WRITE QUTPUT TAPE 6, 405, E2
WRITE QUTPUT TAPE 6, 405, E3
WRITE QUTPUT TAPE 6, 405, E4
WRITE QUTPUT TAPE 6, 405, E5
WRITE QUTPUT TAPE 6, 405, E6
WRITE QUTPUT TAPE 6, 405, E7
WRITE QUTPUT TAPE 6, 405, E8
WRITE QUTPUT TAPE 6, 405, E9

WRITE QUTPUT TAPE 6, 405, E10



WRITE QUTPUT TAPE 6, 405, El11

DIFFERENTIATE D

BETA = -3.0

Dp2J=1, 4

D1P(J) = D1(J) *BETA
2 BETA = BETA + 1,0

BETA = -2.0

D@3J=1, 4

D2P(J) = D2(J) *BETA

3 BETA = BETA+ 1.0

BETA = -2, 0

DP4J=1,5

D3P(J) = D3(J) *BETA
4 BETA = BETA + 1.0

BETA = -5.0

D@5J =1, 6

D4P(J) = D4(J) *BETA

5 BETA = BETA+ 1,0
BETA = -4,0
Dp6J=1, 6
D5P(J) = D5(J) *BETA

6 BETA = BETA+ 1.0
BETA = -3.0

D@TJ=1, 6
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10

11

13

12

D6P(J) = D6(J) *BETA

BETA = BETA + 1.0

BETA = -2.0

D@8 J=1, 6

DTP(J) = D7(J) *BETA
BETA = BETA + 1,0
BETA = -1.0
D@9J=1,3

D8P(J) = D8(J) *BETA

BETA = BETA + 1,0
BETA = 0.0

D 10J =1, 3
D9P(J) = D9(J) *BETA
BETA = BETA + 1.0
D1B

D®11J =1, 10

D3E1(J) = 0.0
K =1

D 121=1, 5
DP13J=1, 6

D3E1(K) = D3E1(K) + (D3(I) *E1(J))
K=K+ 1
K=I+1

D@ 14J=1, 9




14

16

15

17

18

20

19

21

E4D1P(J) = 0.0

K=1
DQP151I=1, 6
DP16J =1, 4

E4D1P(K) = E4D1P(K) + (E4(I) *D1P(J))
K=K+1

K=1+1

D1B(1) = D3E1(1)

I=2

DP17TJI=1, 9

D1B (I) = D3E1(I)-E4D1P(J)
I=1+1

D2B

D@18 1=1, 10

D3E2(I) = 0. 0

K=1

D® 191=1, 5

D®20J=1, 6

D3E2(K) = D3E2(K) + (D3(I) *E2(J))
K=K+ 1

K=1+1

DO 211=1, 4

D12P(I) = D1(I) + D2P(J)

DO 221=1,9
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22

24

23

25

26

28

21

E412P(D) = 0. 0

K= 1
DY 231=1, 6
DY 24J =1, 4

E412P(K) = E412P(K) + (E4(I) *D12P(J))
K=K+1

K=1I+1

D2B(1) = D3E2(1)

I=2

D 25J=1, 9

D2B(I) = D3E2(I) - E412P(J)
I=1+1

D3B

D@ 261=1, 11

D3E3(I) = 0.0

K =1

D®271=1,5

D@28J=1, 17

D3E3(K) = D3E3(K) + (D3(I) *E3(J))
K=K+ 1

K:=1+1

D23P(1) = D3P(1)

I-2

DQ29J=1, 4

D23P(I) = D2(J) + D3P(])

B 48



29

30

32

31

33

34

36

35

1=1+1
DO 301=1, 10

E423P(I) - 0.0

K=1
D 311=1, 6
DP32J=1,5

E423P(K) = E423P(K) + (E4(l) *D23P(J))
K=K+1

K=I+1

D3B(1) = D3E3(1)

I=2

D® 33J=1, 10

D3B(I) = D3E3(I) - E423P(J)
I=1+1

E1B

D® 341=1, 12

D3E5(I) = 0.0

K=1

D@351=1, 5

D36 J=1, 8

D3E5(K) = D3E5(K) + (D3(I) *E5(J))
K=K+ 1

K=1+1

DO 37T1-=1, 11

B 49



37

39

38

40

41

43

42

44

E4D4P(I) = 0. 0

K=1
DO 381=1,6
D®39J=1, 6

E4D4P(K) = E4D4P(K) + (E4(I) *D4P(J))
K=K+ 1

K=1+1

E1B(1) = D3E5(1)

I-2

D@ 40J =1, 11

E1B(I) = D3E5(I) - E4D4P(J)
I=1+1

E2B

D®411=1, 12

D3E6(I) = 0.0

K=1

D 421=1,5
D®43J=1,8

D3E6(K) = D3E6(K) + (D3(I) *E6(J))

K=K+ 1

K=1I+1

DO 441=1, 6

D45P(I) = D4(I) + D5P(I)

D@®451=1, 11

B 50



45

47

46

48

49

51
50

52

E445P(1) = 0. 0

K =1
DP461=1, 6
DP47J =1, 6

E445P(K) = E445P(K) + (E4(I) *D45P(J))
K=K+ 1

K=1+1

E2B(1) = D3E6(1)

I-2

D 48J =1, 11

E2B(I) = D3E6(I) - E445P(J)

= I+ 1

E3B

D@ 491=1, 12

D3E7(I) = 0.0

K=-1

D@501=1,5

D51J=1,8

D3ET(K) = D3ET7(K)+ (D3(1) *E7(J))
K=K+1

K=1+1

D@®521I=1, 6

D56P(1) = D5(I) + D6P(I)

D@ 531~1, 11

B 51



53

55

54

56

57

59

58

60

E456P(1) = 0. 0

K=1
D@541=1, 6
DP553=1, 6

E456 P(K) = E456P(K) + (E4(I) *D56P(J))

K=K+1
K=I+1

E3B(1) = D3E7(1)
I=2

D@56J =1, 11
E3B(I) = D3ET(I) - E456P(J)
I=1+1

E4B

D@571=1, 12
D3ES8(I) = 0.0
K=1
DP58I=1,5
D@®59J=1,8

D3E8(K) = D3E8(K) + (D3(I) *E8(J))

K=K+1
K=I+1

D@60I=1, 6

D67P(I) = D6(I) + DTP()

D@611=1, 11



61

63

62

64

65

67

66

68

69

B 53

E467P(1) = 0.0

K=1
D@P621I=1,6
D63 J=1,6

E467P(K) = E467TP(K) + (E4(I) *D67P(J))
K=K+1

K=1+1

E4B(1) = D3ES8(1)

1= 2

D@64J=1, 11
E4B(I) = D3ES(I) - E467P(J)

I=1+1

E5B
D@ 651=1, 12

D3E9(I) = 0.0
K=1
D@661=1,5

DO67TJ=1, 8
D3E9(K) = D3E9(K) + (D3(I) *E9(T))

K=K+ 1

K-i+1

D68 I=1, 3

D78P(I) = D7(I) + D8P(I)

DP691=4, 6
D78P(1) = D7(I)

DOT0I=1, 11



70

72

71

73

74

76

75

(N

E478P(I) = 0.0

K=1
D 711=1, 6
DpT2J=1,6

E478 P(K) = E478 P(K) + (E4(I) *D78 P(J))
K=K+1

K=I+1

E5B(1) = D3E9(1)

I=2

D@ 13J =1, 11

E5B(I) = D3EY(I) - E478P(J)

I=1I+1

E6B

DpM141=1, 9

D3E10(I) = 0.0

K=1
D@T51I=1,5
DQPT6J=1,5

D3E10(K) = D3E10(K) + (D3(I) *E10(J))

K=K+1

K=1+1

DO I=1, 3

D8I9P(I) = D8(I) + DIP(I)

DQT781I=1, 8

B 54



78 E489P(I) = 0.0

K-1
D@T791=1, 6
D@8o0J=1, 3

E489P(K) = E489P(K) + (E4(I) *D89P(J))
80 K=K+1
9 K=1+1

E6B(1) = D3E10(1)

I=2

DP8LI=1,8

E6B(I) = D3E10(I) + E489P(J)
81 I=1+1

ETB

D@821=1,9

82 D3E11(I) = 0.0

K =1
D@831I=1,5
D@84J=1,5

D3E11(K) = D3E11(K) + (D3(I) *E11(J))
84 K=K+ 1
83 K=1+1

D®851=1, 8
85 E4D9(I) = 0.0

K =1

B 55



DO86I=1, 6

D@87TJI=1, 3

E4D9(K) = E4D9(K) + (E4(I) *D9(J))

8T K=K+1

86 K=1+1
E7B(1) = D3E11(1)
I=2

DO 88J=1,17

E7B(I) = D3E11(I) - E4D9(J)

88 I=1I+1
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,

WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,

WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
F1B

D@89 1~=1, 16

89 D3BD4(I) = 0.0

414
405,
405,
405,
415
405,

405,
405,

405,
405,
405,

405,

D1B

D2B

D3B

E1B

E2B
E3B

E4B

E5B

E6B

E7B

B 56



91

90

92

94

93

95

96

98

K=1
DO 90I=1, 11
D®91J=1, 6

D3BD4(K) = D3BD4(K) + (D3B(I) *D4(J))
K=K+1

K=1+1

D 921I=1, 16

D3E1B(I) = 0.0

K= 1

D®931=1, 5

D®94J=1,12

D3E1B(K) = D3E1B(K) + (D3(I) *E1B(J))
K=K+1

K+1+1

DQ951=1, 16

F1B(I) = D3BD4(I) - D3E1B(I)

2B

D®961=1, 16

D3BD5(I) = 0.0

K =1

DQ9TI=1, 11

D@98 J =1, 6

D3BD5(K) = D3BD5(K) + (D3B(I) *D5(J))

K=K+ 1



97

99

101

100

102

103

105

104

106

K=I+1

D@99 1=1, 16

D3E2B(I) = 0.0

K=1

D@ 100I=1,5

D@ 101 J+ 1, 12

D3E2B(K) = D3E2B(K) + (D3(I) *E2B(J))
K=K+ 1

K=1+1

DQ® 1021=1, 16

F2B(I) = D3BD5(I) - D3E2B(])
F3B

D® 103 1=1, 16

D3BD6(I) = 0.0

K=1

D® 1041=1, 11

D@ 105J =1, 6

D3BD6(K) = D3BD6(K) + (D3B(I) *D6(J))
K=K+ 1

K=1+1

D® 106 I =1, 16

D3E3B(i) = 0.0

K=1

D® 1071=1, 5

B 58



4

108

107

109

110

112

111

113

115

114

D® 108 J = 1, 12

D3E3B(K) = D3E3B(K) + (D3(I) *E3B(J))
K=K+1

K=1+1

DP 1091=1, 16

F3B(I) = D3BD6(I) - D3E3B(I)

F4B

DQ 1101=1, 16

D3BD7(1) = 0.0

K =1

DO 1111=1, 11

DP112J =1, 6

D3BD7(K) = D3BD7(K) + (D3B(I) *D7(J))
K=K+1

K=I+1

D® 1131=1, 16

D3E4B(I) = 0.0

K =1

DQ 1141=1, 5

DQ 115J = 1, 12

D3E4B(K) = D3E4B(K) + (D3(I) *E4B(J))
K:=K+1

K=1+1

D® 116 I~ 1, 16

B 59



116

117

119

118

120

122

121

123

124

F4B(1) = D3BD7(I) - D3E4B(I)
F5B

DQ 1171=1, 13

D3BD8(I) = 0.0

K- 1

D® 1181=1, 11

DQ 119J=1, 3

D3BD8(K) = D3BD8(K) + (D3B(I) *D8(J))
K=K+1

K=1+1

D® 1201=1, 16

D3E5B(I) = 0.0

K-=1

D® 1211=1, 5

D® 122J =1, 12

D3E5B(K) = D3E5SB(K) + (D3(I) *E5B(J))
K=K+ 1

K=1I+1

D@ 123I=1, 13

F5B(I) = D3BD8(I) - D3E5B(I)
D® 124 1 = 14, 16

F5B(I) = ~-D3E5B(I)

F6B

D®1251=1, 13

B 60



125

127

126

128

130

129

131

132

B 61
D3BDY(I) = 0.0
K=1
D@ 1261=1, 11
D@ 127J =1, 3
D3BDY(K) = D3BDY(K) + (D3B(I) *D9(J))
K=K+ 1
K=1+1
D@ 1281=1, 13
D3E6B(I) = 0.0
K=1
D®1291=1, 5
D@ 130J=1, 9
D3E6B(K) = D3E6B(K) + (D3(I) *E6B(J))
K=K+1
K=I+1
D@ 1311=1, 13
F6B(I) = D3BDY(I) - D3IE6B(I)
F1B
D® 1321~=1, 13
D3ETB(I) = 0.0
K=1
D@ 1331=1,5
D®134J=1, 9

D3E7B{K) = D3ETB(K) + (D3(I) *ETB(J))



Q

Q

0O

0

134 K= K+ 1

133

135

136

137

138

K=-I+1

DO 1351 -1, 13
F7B(l) = -D3ETB(I)
F1BP

BETA = -10.0

DQ 136 I =1, 16

F1BP(I) = BETA *«F1B(])

BETA - BETA + 1.0
F2BP
BETA ~ -9.0

DQ 1371=1, 16
F2BP(I) = F2B(I) *BETA
BETA = BETA + 1.0
F3BP

BETA = 3 0

D® 1381=1, 16
F3BP(I) = F3B(l) *BETA
BETA = BETA + 1.0
F4BP

BETA = -7.0
D®1391~1, 16

F4BP(I) = F4B(I) *BETA

139 BETA = BETA + 1.0

B g2



!

®!

Q

0

F5BP

BETA = -6.0

DQ 1401=1, 16

F5BP(I) = F5B(I) *BETA
140 BETA = BETA+ 1.0

F6BP

BETA = -5.0

D® 1411=1, 13

F6BP(I) = F6B(I) *BETA
141 BETA = BETA+ 1.0
FTBP
BETA = -4, 0
D®1421=1, 13
F7BP(I) = F1B(I) *BETA
142 BETA = BETA + 1.0

R1

D@ 143 1:=1, 14
143 D1D3B(I) = 0.0

K =1

DO 1441=1, 4

D@ 1453 =1, 11

D1D3B(K) = D1D3B(K) + (D1(I) *D3B(J))
145 K = K + 1

144 K= 1I+1

B 63



146

148

147

149

150

152

151

153

B 64
DO 146 1 = 1, 14
DIBD2/I) - 0.0
K=~1 |
DQ 1471=1, 10
DQ 148 J =1, 5
D1BD3(K) = D1BD3(K) + (D1B(I) *D3(J))
K=K+1
K+I1I+1
D® 1491=1, 14
R1(I) = D1D3B(I) - D1BD3(J)
R2
D@ 1501=1, 14
D2D3B(I) = 0.0
K=1
DQ 1511=1, 4
D® 152 J =1, 11
D2D3B(K) = D2D3B(K) + (D2(I) *D3B(J))
K=K+1 ‘
K=1I+1 ‘
D 153 1= 1, 14 i
D2BD3(I) = 0.0
K=1
D® 1541=1, 10

D@ 155 J =1, 5



D2BD3(K) = D2BD3(K) + (D2B(I) *xD3(J))

155 K=K+ 1

154

156

157

158

159

161

160

K=I+1

DQ 156 1= 1, 14
R2(I) = D2D3B(I) - D2BD3()
R1P

BETA = -8.0

D@ 1571=1, 14
R1P(J) = R1(I)*BETA
BETA = BETA + 1.0
R2P

BETA = -7.0

D® 158 1=1, 14
R2P(I) = R2(I) *BETA
BETA = BETA + 1.0
vi

DG 159 1= 1, 17
R2D1(1) = 0.0

K= 1

D® 1601 =1, 14

DQ 161J =1, 4
R2D1(K) = R2D1(K) + (R2(I) *D1(J))
K=K+1

K=I+1

B 65




162

164

163

165

166

168

167

DO 1621=1, 17

R1PD2(1) = 0.0

K =1

D®1631=1, 14

Dp164J =1, 4

R1PD2(K) = R1PD2(K) + (R1P(I) *D2(J))
K=K+1

K=1+1

Y1(1) = -R1PD2(1)

I=2

D® 165 J =1, 16

Y1(I) = R2D1(J) - R1PD2(I)
I=1I+1

Y1(18) = R2D1(17)

Y2

D@ 166 1= 1, 17

R2D2(I) = 0.0

K=1

DQ 1671=1, 14

DQ 168J = 1, 4

R2D2(K) = R2D2(K) + (R2(I) *D2(J))
K=K+1

K=1I1+1

D® 1691=1, 14

B 66



169

170

172

171

173

174

176

175

R12{I) = R1(I) + R2P(I)

DP 1701 =1, 18

D312K(1) = 0.0

K =1

DO 1711=1, 5

DO 172J =1, 14
D312K(K) = D312K(K) + (D3(I) *R12(J))
K=K+1

K=I+1

Y2(1) = -D312K(1)

I=2

DQ 173 J =1, 117

Y2(I) = R2D2(J) - D312K(I)
I=1+1

Y3

DQ 174 1= 1, 31

R1Y2(I) = 0.0

K =1

D@ 1751=1, 14

DQ 176 J =1, 18

R1Y2(K) = R1Y2(K) + (R1(I) *Y2(J))
K=K+ 1

K=1+1

D@ 177 1=1, 31

B 67



177

179

178

180

181

182

183

R2Y1(}=0.0
K =1

DQ 178 1= 1, 14

D® 179J =1, 18
R2Y1(K) = R2Y1(K) + (R2(I) *Y1(J))
K=K+1

K=1+1

D®180I=1, 31

Y3(I) = R1Y2(I) - R2Y1())
Y1P

BETA = - 11,0

D® 1811=1, 18

Y1P(I) = Y1(I) *BETA
BETA = BETA + 1,0
Y2P

BETA = -10.0

D® 1821=1, 18

Y2P(I) = Y2(I) *BETA
BETA = BETA + 1.0
Y3P

BETA = -18.0

D® 183 1=1, 31

BETA = BETA + 1,0

B 68



WRITE QUTPUT TAPE 6,
WRITE GUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE UTPUT TAPE 6,
WRITE . QUTPUT TAPE 6,
WRI\\TE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
R1B
DQ 184 1= 1, 48

184 Y2PY3(I) = 0.0
K = 1
DO 351=1,18

DO 186 J = 1, 31

Y2PY3(K) = Y2PY3(K) + (Y2P(I) *Y3(J))

186 K = K+ 1

185 K=1I+1

416

405,
405,
405,
405,
405,
405,
405,
417

405,
405,
418

405,
405,

405,

F1B
F2B
F3B
F4B
F5B
F6B

F1B

R1

R2

Y1
Y2

Y3

B 69



187

189

188

190

192

191

193

194

DO 187 I =1, 48

Y2V3P(1) = 0,0

K=1

D® 188 1~ 1, 18

DO 189 J = 1, 31

V2Y3P(K) = Y2Y3P(K) + (Y2(I) *Y3P(J))
K=-K+1

K-1+1

DO 19071 = 1, 48

Y1V3(I) = 0.0

K=1

DO 1911=1, 18

DO 192 J =1, 31

Y1Y3(K) = Y1Y3(K) + (Y1(I) Y3(J))
K=K+1

K=71+1

DO 1931 - 1, 48

R1B(l) ~ Y2PY3(1) - Y2Y3P(I) + Y1Y3(l)

R2B

]

DO 194

-1, 48

B

R2B(7) = 0,0
K o 1
DO 1951~ 1, 18

DO 196 J - 1, 31

B 170



196

195

197

199

198

200

202

201

R2B(K) « R2B(K) + (Y2(I) *Y3(J))

K~-K+1
K=-i+1
R3B

DO 1971=1, 44

R2PY3(I) = 0.0

K=1

D® 1981+ 1, 14

DO 199 J = 1, 31

R2P¥%3(K) = R2PY3(K) + (R2P(I)*Y3(J))
K=K+ 1

K=1+1

D@ 200I=1, 44

R2Y3P(I) = 0.0

K1

DG®2011=1, 14

DG 202 J =1, 31

R2Y3P(K) = R2Y3P(K) + (R2(I) *Y3(J))
KK+ 1

K=1+1

DQ 2031 = 1, 44

R1V3(I) = 0.0

K =1

DO 2041~1, 14

B 171



B 72

DO 205 J = 1, 31

R1Y3(K) = R1Y3(K) + (R1(I) *Y3(J))
205 K = K+ 1
204 K =1+ 1

DQ 206 1= 1, 44
206 R3B(I) =~ -R2PY3(I) + R2Y3P(I) - R1Y3(J)

R4B

DQ 207 1= 1, 44
207 R4B(I) = 0.0

K =1

DQ 208 1=1, 14

DG 209 J = 1, 31

R4B(K) = R4B(K) - (R2(I) *Y3(J))
209 K - K+ 1
208 K=1+1

G1B

DO 2101=1, 19
210 R2D4(1) = 0.0

K =1

DQ 21111, 14

DQ2i2J =1, 6

R2D4(K) = R2D4(K) + (R2(1) *D4(J))
212 K = K+ 1

211 K= 1+1




213

215

214

216

217

219

218

DO 2131=1, 20

D3F1P(I) = 0.0

K =1

D®2141=1,5

D@ 215J =1, 16

D3F1P(K) = D3F1P(K) + (D3(I) *F1BP(J))
K=K+ 1

Ka=I+1

G1B(1) = -D3F1P(1)

1=2

D® 216 J =1, 19

G1B(I) = R2D4(J) - D3F1P(l)
I=1+1

G2B

DO 2171=1, 19

R2D5(1) = 0. 0

K =1

DQ 218 1= 1, 14

D®219J =1, 6

R2D5(K) = R2D5(K) + (R2(I) *D5(J))
K=K+1

K=1+1

D® 2201I=1, 16

B 173



220

221

223

222

224

225

227

226

F12() = F1B(I) + F2BP(I)
DG 221 1=1, 20

D312(1) = 0.0

K =1

D@ 2221=1, 5

D@ 223 J =1, 16

D312(K) = D312(K) + (D3(I) *F12(J))
K=K+1

K=I+1

G2B(1) = -D312(1)

I=2

D® 224 J =1, 19

G2B(I) = R2D5(J) - D312(1)
I=1+1

G3B

D@ 2251=1, 19

R2D6(1) = 0,0

K=1

D@ 2261=1, 14

DO 227J =1, 6

R2D6(K) = R2D6(K) + (R2(I) *D6(J))
K=K+ 1

K=1I+1

D®2281=1, 16

B 74



228

229

231

230

232

233

235

234

F23(I) = F2B(I) + F3BP(I)
DQ 2291i=1, 20

D323(1) = 0,0

K =1

D@ 2301=1,5

DQ 231J =1, 16

D323(K) = D323(K) + (D3(1) *F23(J))
K=K+ 1

K=i+1

G3B(1) = -D323(1)

I=2

D@ 232J =1, 19

G3B(I) = R2D6(J) - D323(1)
T=1+1

G4B

DO 2331=1, 19

R2D7(J) - 0.0

K =1

D®2341=1, 14

D®235J =1, 6

R2D7(K) = R2D7(K) + (R2(I) *D7(J))
K=K+1

K=1+1

D® 236 T=1, 16
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236

237

239
238

240

241

243

242

F34(1) = F3B(I) + F4BP(])
DG 2371=1, 20

D334(I) = 0.0

K=1

D® 238 =1, 5

D® 239J=1, 16

D334(K) = D334(K) + (D3(I) *F34(J))
K=K+1

K=1I+1

G4B(1) = - D334(1)

I1=2

D@ 240J =1, 19

G4B(I) = R2D7(J) - D334(1)
I=1+1

G5B

DQ 2411=1, 16

R2D8(I) = 0.0

K-1

D®2421=1, 14
D®243J=1, 3

R2D8(K) = R2D8(K) + (R2(I) *D3(J))
K=K+1

K=1+1

DQ 244 1=1, 16
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244 F45(1)-= F4B(I) + F5BP(I)
DG 245 1= 1, 20
245 D345(1) = 0.0
K= 1
DQ 246 1=1, 5
DQ 247 J =1, 16
D345(K) = D345(K) + (D3(I) *F45(J))
247 K = K + 1
246 K = 1+ 1
G5B(1) = -D345(1)
I=2
D® 248 J =1, 16
G5B(I) = R2D8(J) - D345(1)
248 1=1+1
D® 249 1= 17, 20
249 G5B(I) = -D345(1)
G6B
D®2501=1, 16
250 R2D9(I) = 0.0
K=1
D@®2511=1, 14
D@ 2527 =1, 3
R2D9(K) = R2D9(K) + (R2(I) *D9(J))

252 K=K+ 1
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251

253

254

255

257

256

258

259

260

K=1+1

DO 2531+ 1, 13

F56(I) = F5B(I) + F6BP(I)
D® 254 1= 14, 16

F56(I) = F5B(I)

D® 2551=1, 20

D356(I) = 0.0

K=1

D® 2561=1, 5

D® 257 J =1, 16
D356(K) = D356(K) + (D3(I) *F56(J))
K=K+1

K=1I+1

G6B(1) = -D356(1)

I~2

D® 258 J =1, 16

G6B(I) = R2D9(J) - D356(I)
I=1+1

D® 259 1= 18, 20

G6B(I) = -D356(1)

GTB

D@ 2601-1, 13

F67(I) = F6B(I) + FTBP(I)

D®2611=1, 17
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261 G7B(I) = 0.0
K=1
D®2621=1, 5
D® 263 J =1, 13
GTB(K) = GTB(K) - (D3(I) «F67(J))
263 K=K+ 1
262 K=1+1
G8B
D 2641=1, 17
264 G8B(I) = 0.0
K=1
D 2651=1, 5
D® 266 J =1, 13
G8B(K) = G8B(K) - (D3(I) *F7B(J))
266 K=K+ 1
265 K=1+1
G1BP
BETA = -13.0
D®2671=1, 20
G1BP(I) = G1B(I) *BETA
267 BETA = BETA + 1.0
G2BP

BETA = -12.0

D@ 268 1= 1, 20
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268

269

270

271

2

”

2

G2BP(I) = G2B(I)*BETA

BETA = BETA+ 1,0
G3BP
BETA = -11.0

D@®2691=1, 20

G3BP(1) = G3B(I) *BETA

BETA = BETA + 1.0
G4BP

BETA = -10.0
D@®2701=1, 20

G4BP(I) = G4B(I) *BETA

BETA = BETA + 1.0
GHBP
BETA = -9.0

D@ 2711=1, 20
G5BP(I) = G5B(I) *BETA
BETA = BETA + 1.0
G6BP

BETA = -8 0

D@ 2721=1, 20
G6BP(I) = G6B(I) *BETA
BETA = BETA + 1,0
GTBP

BETA = -7.0
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273

274

D 2731=1, 17
GTBP(I) = G7B(I) *BETA
BETA = BETA + 1,0

G8BP

BETA = -6, 0

DQ 274 1=1, 17

G8BP(I) = G8B(I) *BETA
BETA = BETA + 1.0
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6

3

WRITE QUTPUT TAPE 6,
WRITE QUTPUT TAPE 6,
T1

DO 2751= 1, 60

420

405,
405,
405,
405,
423

405,
405,
405,
405,
405,
405,
405,

405,

R1B
R2B
R3B

R4B

G1B
G2B

G3B

G5B
G6B
G7B

G8B
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275

271

276

278

280

279

281

283

T1() = 0.0

K =1

DQ 276 1= 1, 44

DG 277 J = 1, 17

T1(K) = T1(K) + (R4B(I) *G8B(J))

K=K+1

K=1+1

WRITE QUTPUT TAPE 6, 424
WRITE QUTPUT TAPE 6, 405, T1
T2

DQ 278 I1=1, 60

R2F7(I) = 0.0

K=1

D® 279 1=1, 48

D® 280 J = 1, 13

R2F7(K) = R2FT7(K) + (R2B(I) *F71B(J))
K=K+1

K=1+1

D® 281 1=1, 60

R3G8(1) = 0.0

K=1

D® 2821=1, 44

DQ® 283J =1, 17

R3G8(K) = R3G8(K) + (R3B(I) *G8B(J))

K=K+1
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282

284

285

287

286

288

289

291

290

K=1+1

DQ 2841=1, 117

G78(1) = GTB(I) + G8BP(I)

D@ 2851=1, 60

R478(1) = 0.0

K=1

D@ 286 1=1,44

DQ 287J =1, 117

R478(K) = R478(K) + (R4B(I) *G78(J))
K=K+1

K=1+1

D@ 2881=1, 60

T2(I) = R2F7(I) + R3G8(I) + R478(1)
WRITE QUTPUT TAPE 6, 426
WRITE QUTPUT TAPE 6, 405, T2
T3

DQ 2891=1, 60

RI1F7(1) = 0.0

K=1

D 2901 =1, 48

D 291J =1, 13

R1F7(K) = R1F7(K) + (R1B(I) *F7B(J))
K+K+ 1

K=1I+1
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292

294

293

295

297

296

298

299

300

D® 2921=1, 60
R267z(1) = 0.0
K=1

D@ 293 1=1, 48

D 294 J =1, 13
R267Z(K) = R267Z(K) + (R2B(L) *F67(J))

K=K+1

K=1+1

D®2951=1, 60

R3G7(I) = 0.0

K=1

DQ 296 1=1, 44

D® 297 J =1, 17

R3G7(K) = R3GT7(K) + (R3B(I) *GTB(J))
K=K+1

K=I+1
D® 298 I=1, 17

G61(1) = G6B(I1) + GTBP(I)
D@ 299 1=18, 20

G67(I) = G6B(I)

DQ 3001=1, 63
R467G(I) = 0. 0
K =1

D 3011=1, 44
D® 302J =1, 20

R46TG(K) = R467TG(K) + (R4B(I) *G67(J))
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302

301

303

304

305

307
306

308

310

K=K+1

K=1+1

D® 3031=1, 60

T3(I) = R1FT7(I) + R267Z(I) + R3G7(I) + R467G(I)
D@ 304 1=61, 63

T3(I) = R467G(I)

WRITE QUTPUT TAPE 6, 427
WRITE QUTPUT TAPE 6, 405, T3
T4

D®3051=1, 60

R1F6(I) = 0.0

K=1

D® 306 1 =1, 48

D® 307J=1, 13

R1F6(K) = R1F6(K) + (R1B(I) *F6B(J))
K=K+1

K=1+1

D@ 3081=1, 63

R256Z(I) = 0.0

K=1

D® 3091=1, 48

D® 310J =1, 16

R256Z\K) = R256Z(K) + (R2B(I) *F56(J))

K=K+ 1
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309

311

313

312

314

315

317

316

318

319

K=1I+1

D@ 3111=1, 63

R3G6(I) = 0.0

K=1

D@ 3121=1, 44

D@ 3137 =1, 20

R3G6(K) = R3G6(K) + (R3B(I) *G6B(J))
K=K+1

K=1+1

D@ 3141=1, 20

G56(I) = G5B(I) + G6BP(I)

D® 3151=1, 63

R456G(I) = 0.0

K=1

D® 316 1=1, 44

DO 317J =1, 20

R456G(K) = R456G(K) + (R4B(I) *G56(J))
K=K+1

K=I+1

D® 3181=1, 60

T4(I) = R1F6(I) + R256Z(I) + R3G6(I) + R456G(I)
D@ 3191 = 61, 63

T4(1) = R2562(I) + R3G6(I) + R456G(I)

WRITE QUTPUT TAPE 6, 429
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320

322

321

323

325

324

326

WRITE QUTPUT TAPE 6, 405, T4
TH

D® 3201=1, 63

R1F5(I) = 0.0

K=1

D@ 3211=1, 48

D® 3223 =1, 16

R1F5(K) = R1F5(K) + (R1B(I) *F5B(J))
K=K+1

K=I+1

D® 3231=1, 63

R245z(I) = 0.0

K =1

D® 3241=1, 48

D® 325 J =1, 16

R245Z(K) = R245Z(K) + (R2B(I) *F45(J))
K=K+1

K=1+1

D@ 326 1I=1, 63

R3G5(I) = 0.0

K=1

D@ 3271=1, 44

D® 328 J -1, 20

R3G5(K) = R3G5(K) + (R3B(I) *G5B(J))
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328

3217

329

330

332

331

333

334

336

K=K+1

K=1+1

D® 3291=1, 20

G45(I) = G4B(I) + G5BP(])

DQ 3301~ 1, 63

R445G(I) = 0.0

K=1

DQ 3311=1, 44

D@ 332J =1, 20

R445G(K) = R445G(K) + (R4B(I) *G45(J))
K=K+1

K=1I+1

D® 3331=1, 63

T5(I) = R1F5(I) + R2452(1) + R3G5(I) + R445G(1)
WRITE QUTPUT TAPE 6, 430
WRITE QUTPUT TAPE 6, 405, T5
T6

D®3341=1, 63

R174(1) = 0.0

K=1

D® 3351I=1, 48

D@ 336 J =1, 16

R1F4(K) = R1F4(K) + (R1B(I) *F4B(J))

K=K+1

IS
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335

337

339

338

340

342

341

343

344

K=1+1

D® 3371I=1, 63
R234Z(1) = 0.0
K=1

DQ 3381 =1, 48
D® 339J=1, 16
R234Z(K) = R234Z(K) + (R2B(I) *F34(J))
K=K+1

K=I+1

D® 3401=1, 63

R3G4(I) = 0.0

K=1

DQ 3411=1, 44

D@ 342J =1, 20

R3G4(K) = R3G4(K) + (R3B(I) *G4B(J))
K=K+1

K=1I+1

D®3431=1, 20

G34(1) = G3B(I) + G4BP(I)

DQ 344 1=1, 63

R434G(I) = 0.0

K=1

DQ 3451=1, 44

D® 346 J = 1, 20



346

345

347

348

350

349

351

353

352

R434G(K) = R434G(K) + (R4B(I) *G34(J))
K=K+1

K=1+1

DQ 3471=1, 63

T6(I) = R1F4(I) + R234Z(I) + R3G4(I) + R434G(J)
WRITE QUTPUT TAPE 6, 431

WRITE QUTPUT TAPE 6, 405, T6

T7

D® 3481=1, 63

R1F3(I) = 0.0

K=1

DQ 349 1-=1, 48

D® 350J =1, 16

R1F3(K) = R1F3(K) + (R1B(I) *F3B(J))
K=K+1

K=1+1

D@ 3511=1, 63

R223Z(1) = 0.0

K=1

D@ 3521 =1, 48

D® 353 J = 1, 16

R223Z(K) = R223Z(K) + (R2B(I) *F23(J))
K=K+1

K=I+1
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654

355

354

356

357

359

358

360

D® 654 1= 1, 63

R3G3(I) = 0.0

K=1

DQ 3541=1, 44

D® 355 J =1, 20

R3G3(K) = R3G3(K) + (R3B(I) *G3B(J))
K=K+1

K=1+1

D® 356 1=1, 20

G23(I) = G2B(I) + G3BP(I)

DQ 3571=1, 63

R423G(I) = 0.0

K=1

D® 358 1=1, 44

D® 359J =1, 20

R423G(K) = R423G(K) + (R4B(I) *G23(J))
K=K+1

K=1I+1

D® 3601I=1, 63

T7(I) = R1F3(I) + R223Z(I) + R3G3(I) + R423G(I)
WRITE QUTPUT TAPE 6, 432
WRITE QUTPUT TAPE 6, 405, T7
T8

D@ 3611=1, 63
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361 R1F2(I) = 0.0

K=1

D®3621=1, 48

D® 363J=1, 16

R1F2(K) = R1F2(K) + (R1B(I) *F2B(J))
363 K=K+1
362 K=1+1

D® 3641=1, 63
364 R212Z(I) = 0.0

K=1

D® 3651=1, 48

D@ 366 J =1, 16

R212Z(K) = R212Z(K) + (R2B(I) *F12(J))
366 K=K+ 1
3656 K=1+1

D® 3671=1, 63
367 R3G2(I): 0.0

K=1

DQ 368 1=1, 44

D@ 369J =1, 20

R3G2(K) = R3G2(K) + (R3B(I) *G2B(J))
369 K=K+ 1
368 K=1+1

D@ 3701=1, 20



370

371

373

372

374

375

377

376

378

G12(1) = G1B(I) + G2BP(l)

D® 3711=1, 63

R412G() = 0.0

K=1

DQ 3711=1, 44

D@ 373J =1, 20

R412G(K) = R412G(K) + (R4B(I) *G12(J))
K=K+1

K=1I+1

DQ 3741=1, 63

T8(I) = R1F2(I) + R212Z(I) + R3G2(I) + R412G(I)
WRITE QUTPUT TAPE 6, 433
WRITE QUTPUT TAPE 6, 405, T8
T9

D@ 3751=1, 63

R1F1(I) = 0.0

K=1

D® 376 1= 1, 48

D@ 377J =1, 16

R1F1(K) = R1F1(K) + (R1B(I) *F1B(J))
K=K+1

K=I+1

D®3781=1, 63

R2F1P(I) = 0.0

Lin)
~J



K=1

DO 379 1=1, 48

DO 380 J = 1, 16

R2F1P(K) = R2F1P(K) + (R2B(I) *F1BP(J))
380 K=K+1
319 K=1+1

DI;11I=1, 63
381 R3G1(I) = 0.0

K=1

D® 3821=1, 44

D® 383J =1, 20

R3G1(K) = R3G1(K) + (R3B(I) *G1B(J))
383 K=K+1
382 K=1+1

D384 1=1, 63
384 R4G1P(I) = 0.0

K=1

D@ 3851=1, 44

D@ 386 J = 1, 20

R4G1P(K) = R4G1P(K) + (R4B(I) *G1BP(J))
386 K=K+ 1
385 K=1+1

D@ 3871=1, 63

387 T9(I) = R1F1(}) + R2F1P(I) + R3G1(I) + R4G1P(I)



402
404
405
407
408
410
413
414
415
416
417
418
420
423
424
426
427
429
430

431

WRITE QUTPUT TAPE 6, 434
WRITE QUTPUT TAPE 6, 405, T9
CALL EXIT

FQRMAT (4E18.7)

F@RMAT (1H1(4E18.7))

FQRMAT (15H A1 THRQUGH A17)
FQRMAT (1H (6E18. 7))

FQRMAT (15H B1 THRQUGH B15)
FQRMAT (15H C1 THRQUGH C20)
FQRMAT (14H1D1 THRQUGH D9)
FQRMAT (15H E1 THRQUGH E11)
FQRMAT (14H D1B, D2B, D3B)
FQRMAT (16H E1B THRQUGH ET7B)
FQRMAT (16H F1B THRQUGH F17B)
FQRMAT (10H1R1 AND R2)
FQRMAT (11H Y1, Y2, Y3)
FQRMAT (16H R1B THRQUGH R4B)
FQRMAT (16H1G1B THRAJHUGH G8B)
FQRMAT (3H T1)

FQRMAT (3H T2)

FQRMAT (3H1T3)

FQRMAT (3H T4)

FQRMAT (3H T5)

FQRMAT (3H T6)
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432 FORMAT (3H1TT)
433 FQRMAT (3H ".3)
434 FQRMAT (3H T9)

END(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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} ABSTRACT
Q%YV

An asympotic general solution of a segment of an elastic and
isotropic truncated conical shell with linearly varying thickness
sub jected to lateral normal loads is presented. The segment is
free from normal force and moment along the two straight edges but

arbitrarily supported along the two circular ends. As an example,

a solution is given for a segment with one circular end free and

the other end fixed. sz/ﬁ/;z;{ir\'



Technical Report C for NASA Contract NAS8-5168

AN ASYMPTOTIC SOLUTION FOR CONICAL SHELLS
OF LINEARLY VARYING THICKNESS

|
|
\
|
1
Prepared By
|
Chin Hao Chang, Ph. D.* |

\

I. INTRODUCTION

The results presented in this report are a continuation of the
work which has been reported in a Summary Report of November, 1962,
for Contract No., NAS8-5012, see Reference (1).

In that report, a general method leading to the solution of the
problem of a segment of conical shell subjected to laternal normal
load was given. An exact solution could be obtained by following that
method. However, the numerical computations involved would be very
laborious. A closer study of the data for an engine shroud supplied
by the sponsoring agency has revealed that the bending effect is almost
negligible. In other words, many terms associated with the parameter
k which accounts for the bending effect are not necessary. Since the
shell itself is quite thin, k is a very small value. Because of this
fact, a limiting case as k approaches zero asymptotically has been
investigated. An asymptotic solution for this case has been obtained.

In this report, for completeness, the entire problem and its
basic formulations are given. A method for obtaining the homogeneous
solution follows and then a general asymptotic solution of a segment
of conical shell subjected to a lateral normal load is presented. As
an example of application of the general solution, the solution for a

cantilever segment with the data supplied by the sponsoring agency is

+ Assistant Professor of Engineering Mechanics, University of
Alabama, University, Alabama,



given along with numerical curves directly applicable for design

purpose,

II. THE BASIC FORMULATIONS

Cc2

Consider a segment of a truncated thin conical shell of elastic

isotropic and homogeneous material. The middle surface of the shel
is described by the co-ordinates s and 9, where s is the distance t
a point measured from the apex along a generator and 6 is the angle
measured from an edge meridian to the generator on which the point

lies. The inclination of s with respect to the central axis in ind

1

o}

i~

cated by an angle a the complement of the half-central angle of the

eone. The thickness t of the shell is assumed to be in direct pro-

protion to the distance s, i.e.,

t=§s (1)
where § is a constant of proportionality. The segment is bounded
by s = L,,L and 6=0 and 8, as shown in Fig. (1).

Let u, v, and w be the three displacement components in the s,
9, and normal-to-the-middle-surface directions respectively. The
elastic law assumes the following relationships between the forces

and displacements:

NS =DV «+ E(U'sec a + Vv + w tan a)]-Kg tan a ,
1 U .
Ne DIS (cosa+V ana) +Pv’]
1' .
+ Kié-[ ? tan ¢ + w tan?a + w'sec?a + sw'] tan « ,
- 1-v u v'
Nsg =D =3 lu - s’ S cos a ]
1-v 1 \ . Am2
*R= ¥ lsu’ - u - sw sin a sin a ] tan® a



C3
1-9 1 . , - .
Ngg =D =5 < [ su" - u+ v' sec a ] (2)
l-v 1 .
+ K == 5[V sec a + sw e — ] tan? a,
s sin a sin a
1 2.0 . 11 2 B
M, =Kz [ s?w "-sv'tan a +¥(w'sec?a +sw'-u'sec a tan a)l,
1 1 2 . 2 2v9° °
Mg = K — [w® sec? o +sw’ +w tan?® a +¥s?w’ ],
_ 1 . . s .
MSg = K(1-v) =2 [sw' -w'-su’ sina + u sin a ] sec a.
- 1 [ ' 1 ‘ai 1 s
Mgg = K (1-v) [sw"® -w - 3% su'sina +% usina

+ 1 vt tan a] sec a,

in which ng N,, M are normal forces and moments per unit length

e? S) Mg!

in the s and @ directions; Ns and Ms are shearing forces and twisting

0 6

moment per unit length on a section normal to s and acting in the @

direction, and the constants D and K are defined as following:

_ Et _ E®
D=357 . K= a5y - (3

The dots indicate partial differentiation with respect to s and primes
differentiation with respect to 9.

Let Ps’ Pg, and Pr be the load components per unit area in the S,
9, and normal-to-the-surface directions respectively. The six equations

of equilibrium assume the following form :

(SNS)” + Nés sec a - Ne = ~PSS

S(Nse)” + Né sec a + Nes - Qg tan a = -PQS

Ng tan a + Qé sec a + (SQS)° = PrS )
(SMS)° + Méssec a - Me = SQS

(SMSQ)' + Mb sec o + Mes = SQg

S<Ngs - NSQ) = MGS tan a
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where QQ and QS are the transverse shearing forces acting on 0 and
s planes respectively.

The last of equations (4) is an identity which can be seen by
making use of stress-displacement law (2). Therefore, this equation
may be dropped. Using the third and fourth equations of equations
(4), the transverse shearing forces Qg and QS may be eliminated from

the other three. Finally there are three equations of equilibrium:

(SNS)' + Nés sec q - Ne = —PSS,

SNe tan a «+ S(SMS)" + (SM'SQ)' sec a + (SMés)' sec a

+ ME sec? q - SMé = PrSZ. (5)
S(SNSQ)' +SNé sec a + SNgs - (SMSG)' tan a

Mg tan o - My tan o sec a = —PQSZ,

These three equations may be expressed by means of the elastic law in

terms of the three displacements in the following form:

2.4 " 2 3 . 1+|> .
— S2u’" + u" sec?a + (1-2) su' - (1-Mu + —5— sv'’ seca
+ (2-V) V' sec a + §' tan a sec a + k{% (1-9) s2 v'' tan a

# 3 (1-9) su’ tan a - 3(1-¥) u tan a - (352) s?w' "’ sec a

2
-3(1-7) sw'" sec a + 3(1-?) w' sec a] tan a = - POS
D
(6)
(IED) su'’' sec a - ; (1-9) u' seca + s2 v'* + l%— v'' sec a
+2Sv’ —(1-?)v +Psw’ tan a - (1-?) w tan a
+k [ léz v' tan a sec’? @ -~ v tana - §w' '+ 152 sw'' sec? a
- - 2
-~ 382w - 252 w' sec® ¢ - sw' - w tan? a] tan a = P;S
D
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[u' seca +Vsv’ + v+ wtan o] tan a + k I - 352 s?u'"" sec a
- (3+))su'’ sec a + (3-5P)u* seca - Sv' " + l%1>SV”' sec? q

-6s2v°" + (2-9) V" sec2 @ - 7 SV' -v(1- tan? a)] tan a

+k [ s%w " " +25%w" "‘sec? @ + wi'sec* a + 8 w'°°
+USW'" "seca + s?(11+30)W° "+2W"tanZasec?a R
-(5-6V) w" sec? a - 2(1-3)) sw' - w (1l-tan2a) tanza]= Py %T
. 62
where k = kW] (6a)

The above formulations of the problem are given in Reference (2).
They are exact in a sense that only terms of second and higher power
of K or equivalent of k are neglected in the elastic law (2).

The segments considered are free from normal moment and force along

the two straight edges such that

Mg = 0 and N9 = 0 for 8 = 0 and 91 7
These two conditions are satisfied by assuming
nm 6
u=_2 Af (s) cos —
n=1 nn %
V = B £ (s) sin nn@
- ézl n n 91
. nne
W = Z Cnfn(S) s:.n—g—
n=1 1 (8)

where An’ Bn’ and Cn are constants and fn(s) is a function of s to be
determined by the set of equations (6). Now consider the case in which

the segment is subjected to only a lateral normal load. Thus

Pg = PS =0
and let
P = 2. AnPn(s) sin %;9
n=1 1 (9
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For convenience, a non-dimensional variable is introduced such that

along

Y 3 (10)

o

with the assumption

£ () = y*nL (11)

in which /\n are constants to be determined. Substituting equations (8)

to (11) into (6) results

where

while

and d

simul

n ““n 13"n
da1hy + dgB ) + 493ty = O (12)
_ (1-93)L -A
d31An * d32Bn * d33Cn - ES§ AnPn(y)}a n

d;, = l—f (1+3k tan?g) (9-A2 ) +mn

4. =} T(7-57) + (1+M)A 1 m

diy = {1 13(9—110) + 8DA - (3-;7),\2]} m tan a

dyp = % (1-A2) + (1-0) (1+_m2) + k tan®a (1+ T w2 (13)
dog =% tan o [(2-9) -VA ] k tan a{1—8 tanZq

+

2(7-3) m2 -1 3+2(1->)mt21]/\n + 342 -;\an}
4 = tan’a + 3% k {(13-129) -16(1-tana) tan® a
+8[(11-12 ) - 4 tan%a] m 2 + lém? - 2 T¢7- 6y)+’+m2]/\2 +,\4}

dy), dg,, and d,, are obtained by replacing A_ by -/{n in d;, and d,,

13 respectively and where

m = 2L sec a
n 6, (14)
IITI. ON THE HOMOGENEOUS SOLUTIONS
The homogeneous solutions are obtained from the following three

taneous equations of equations (12)

d11A + d; B + d14C = 0
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dy A + @B + dpC = 0

414 + 4B + di4C

in which and also hereafter the subscript n is omitted for brevity,

0 (15)

For the constants A, B and C to be non-trival, the determinant must vanish

i.e.

(16)

41 42 dys

Substituting the coefficients given by (13) into the determinant and
neglecting the terms of second and higher power of k, as one did in
obtaining the elastic law (2), yields,

dA® - g6A6 * gL,/\LL - gz)\z + gyl + dA*1042 + 9] =0 (17
where

G = 16(1-p?) tanZa

g = 4(7-4?) - 8 tan?a +16m?

g, = 2L (127-136) + 2u92) - 4(8+3)) tan3a + 8(4-3)2) tanta)
+ 16[ 17-12/-6tan%a] m? - 96m* (18)

g, = 4(203-216 +1200%) - 2(80-61) tan®a +40(4-37%) tan?a]
+16[ (71-72)) - 4 (13-10") tan2a + 8(2-))tan*alm?
+ 64 1(13-129) - 2(4-D) tan®a] w* +256m°

gg = of (13-129) (5-4») - 8(8-70) tanZa +16(4-3)2)tanta]

+ 16] (215-412P+192p2) + 2(89-172V+96/2) tanZa
+ 40(2-p) tan%a]m?
- 32[ (81-184p+9602) + 4(16-13 dtan3a - 8 tan2alm®

+ 2560 (3-41) - 2 tan%a] w® + 256 w®
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The equation (17) could be solved by Brown's method as was mentioned
in the Summary Report. However, it has been found that this method is quite
laborious. In view of the approximations made in arriving at the equation
itself, a method which, to some extent is similar to so called perturbation
method is used. This method gives a quick result with the same accuracy
provided by the present theory,

Introducing

No=xy v kg v (19)

into equation (17) and neglecting the terms of second and higher power

of k gives

4
lc[xo - g6ia0 + g4x(2) - g2x0 + go + G(2xox1 - 10x‘1)]
2 =
+ G[xo - 10x, + 9] = 0, (20)
This equation is satisfied if
2 . =
xg - 10x5 + 9 =0 21

and
a _ a 2 _ _ -
X 86Xp * GaX, 82Xy * & * 2G(xO 5) x4 0 (22)
Equation (21) provides two roots of X,

x0 =1 and 9 ., (23)

Solving for x; from equation (22)
4 _ 3 3
_ Yo " Be¥g T Eu¥g - BaXg * g
s 2G(x, - 5 (24)

Thus two roots of A2 are obtained. Denoting them by A,;2 and 4,2,
1-g6+gq_g2+go

A2 =1+ k e

(25)

A 25 _
A2=9 -k T TE e - % + g
56

Let the other two roots of A% be A, % and A,%. Then equation (17) may

be written as follows:

(/\2 _A12)(/\2 _)\22)(/\2 _Aaz)(/\z _/‘42) = 0
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Expanding the previous equation and equating the coefficients of A6

and ,KO to the corresponding ones in equation (17), one obtains

A1? +AQ° “")\32 */\42 =g6
9G

Solving for A, 2 and A, ?, yields

R

a2 =3 (g, -x2% -4 ti/rle]? (g, +%) -[1; (g -k1? - A2D]
4

(26)
Finally four real roots of ) are obtained from equation (25) and four
complex roots from (26).

With the eight roots computed, one may follow the method outlined
in the Summary Report to obtain the homogeneous solutions of the dis-
placements. However, it would be almost impossible to work out the
solutions in a general form. A closer study of the algebric expressions
of the solutions reveals that many terms are negligible because of
smallness of the parameter k (see Table 1). If only the terms with the
lowest power of k are retained in the algebric expressions, the solution
will be simplified. Such simplified solutions would be.adequate for
practical design of thin shells such as the one being concerned. 1In

what follows, a solution considering the parametric constant k approaching

zero asymptotically is presented.

IV. THE ASYMPTOTIC SOLUTIONS
(1). The Asymptotic Homogeneous Solutions
Let the parameter k approach zero asymptotically and only the terms
with the lowest power of k be retained, then the eight roots of )\

obtained from equations (25) and (26) become

Ay

2

A

+1, Ag =% 3 (27)
4

H(L+1), Ao = + £(1-1) (28)

8
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where

§ = ,E(E)l/“, (29)
2 "k
When )\ =,\i (i =1,2,3, and 4) the corresponding coefficients A,

and Bi may be solved in terms of Ci‘ From the first two of equations

(15),
_ 4m tan a 2 S 2
A= - =2 [2()i +Ai+z>+qi+1)<f\i-5).> —4m ]ci (30)
2 tan a v l
= - DS+ T 221 25 ¢
B, 5 (A;-3 1 \/\.i.3>t<,\i+1>‘> 2] + um | C,
where

M = (Ai2-9)(/\i2-5+4;>> + 8m2(2m2+4?-5-)\i2).

Substituting the values of Ai given by (27) into the foregoing formulation

yields a set of the homogeneous solutions. Denoting them by UI’ VI and

WI’ they are

_ 1 C, -2 & L4+l pP-m? -4
Up = m tan GL{m?-l 1YWy Y tw Y m72rme GV jeosg
_ 1 2C -2 3c ~4) . mno
Vp = tan a{mz—l Citwam Y twoan Y }Sm e @
_ -2 5 -4 . nné
W o= {Cl+02y + Cuy* + Cy } sin 7:;
When A =1Xj(j=5,6,7 and 8)
Aj = 4m tan o [_(2+>)W] C; (32)
1 J
B, = -2V tan a . C.
J J

which are obtained again from the first two of equations (15). The
bars introduced are simply to indicate that these coefficients are com-

plex numbers. To present the resulting solutions in a real form, 1let

—_— 1 . —_— 1 o
C5 =5 (C5—1C6) C7 =3 (C7—108)
_ 1 1 (33)
CG =5 CCS+108) 08 =5 CG7+1CS)

nr o

1
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and apply the identity

yif NS £2:5 cos{ffny) + i sin(P/lny)
to these solutions which dennted by UII’ VII and WII become

i k. 1/2 . -1f. .
U =m (2+?) tan a ( z) 2y {Y?[C6 cos (p/ny) - CSSLn(ony)]

+ y_f [ ~Cgq cos(p fny) + C, sin Qfény)l} cos %;9

‘ 1
k, 1/4 -1 .

Vi1 T —[E-Vtan a (E) / ¥ { y?[(CS—C6) cos(fény) + (C5+C6) sin (P4ny)]

+ y'f [-(07—08) cos {f(hy) + (c7+08) sin fony)] %gf

=
H

1T Y_l )} y [Cscos(feny) + G, sin (P¥ny)

it
Ql (34)

+ y—fIC7cos(f€nyD + Cssing>£ny}]} sin

In both equations (31) and (34) the summation signs are omitted.

The general homogeneous solutions consist of both sets of solutions
(31) and (34). The eight constants Cl’ C2, een CS are to be determined
by the eight prescribed boundary conditions including edge loads at the
two circular ends.

The first set of solutions are simply the solutions of membrane
theory. 1In other words, when A is a finite constant as k approaches
zero, the equations of membrane theory may be used for asymptotic

solutions., Based on this fact, the equations of membrane theory will

be used for the asymptotic particular solutions of the problem.

(2) Particular Solutions
The lateral normal load defined in expression (9) is confined in

such a form that

or

r 2r (35)
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where r is a given constant.

Substituting expression (35) into equations (12) and equating

A

H

A= 2r+3

the particular solutions are readily obtained by solving the three algebric
simultaneous equations (12) provided that A is not equal to any one of
the,xi or Aj’ the roots of the determinant. When X" does equal one of the
roots, a particular approach must be used which will be demonstrated in
what follows.

Consider a case when the load is uniformly distributed in the s-
direction. (This is the load specified by the sponsoring agency for the
engine shroud.) 1In this case, Pn is unity, r = 0 and A= 3 which is one
of the roots of the determinant of the asymptotic homogeneous solutions
given by (27). Since A¥is a finite constant, the corresponding particular
solutions may be obtained from the equations of membrane theory. These
equations are obtained simply by letting k = O in equation (6).

Assume a set of particular solutions denoted by Up’ Vp and Wp in

the form:
U =2 (4, + d. {ny) y? cos Ll
p nl n2 ]
n=1 1
. 0
V_ = (b . +b. fny) y? sin 2=
P 42 nl n2 Gl
W= C_.(1+ ky) y? sin on9 (36)
p t nl g
n=1 1
and put
. nme
P = Zz a sin —
r 5e1 n 91
; Pg = Ps =0
s’
where y 'J[f as before, dnl’ dn2’ bnl’ bn2 and Cnl are constants to be

determined.
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Setting k = 0 and introducing functions (36) into equation (6),
after cancelling out the sinusoidal functions, the following equations
are obtained:

1 1 _
m -md, + 5(5-?) b, + tan a Cl] lny +{m [-md1 + 5(5—9) b1 + tan a Cl]
3 1 i}
o+ E(l—?)dz + E(l""?) me} =0

. -7
[m1-27) 4, + <1+D—17m2) b, + (27-1) tan a cl] lny + [m(1—2¢>)d1 (375
l:Z 1+0

2 L
[-md,+(1+9)b+tan a € ]iny+] -nd +(1+M)b +tan o C, + %)bzl -

+ (14V- m?) b, + -21 (50-2) tana C, - md, + % b,] =0

al. 12(1-p2)
tana E% .

The subscripts n have been dropped for simplicity.

Equations (37) are satisfied if the coefficients of the independent
variable y on the both sides of equations (37) are equal. Two sets of
equations may be obtained for the constants: The first set is obtained
by equating the coefficients of 1ny,

of -md,+5(5-»)b; + tan a c,l =0
[m(1—2>)d2 + (1+¢l%£ m?) b, + (2/0-1) tan a Cl] =0 (38)

-ma, + (1+>) b, + tan a C1 =0

and the second set is obatined by equating the coefficients of y0

wl-md + 5 (5-)) b, +tana G )+ 3 (1)) gwp (1+Mmby = 0

1
” l_P 2 A 1/' 1+> 3 ! ¥
m(1-2;>)d1 + \1+D--§~—m by + Ex_5>-2)tan @ C, - =m, + by = 0 (39
aL, 12(1-9?)

1
_md1+(1+b)b1 + tan a C1 + E?bz = = =

Note that equations (38) are the same as equations (15) when k = 0
and A = A;= 3. Since A = 3 is a root of the determinent of equations
(38), there are only two independent equations in equations (38). Solving

for the five constants dl’ d2, bl’ b2, and Cl’ from the five independent

equations of (38) and (39), the results are:

m
=L 1 57 n_1 s _ _ 2 _ Y
Up " E§ tan a %% 3 I 2 I2mn 3(5-9) m 3(1+9) ]
, n . (55 .
+(m 2 -7+ 2)) lny]-y2 cos 2E
n gl
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/ L L 1 : . nné
= == ——— = al301-203 - m 2]vy2
Vo “F5 Tan s © 2; r1[3(',1 205 m ly?sin 7%7
- 2 ——17— 2_74221 €14 . g
Wp " Es tan’a 3 ;ij mn[mn -7+2¢] (1+1ny) s1n-zaf o

3. The Complete Solutions

The complete solutions are obtained by superpositions of solutions
(31), (34), and (40). From these complete solutions, the stresses and
moments may be determined by use of the elastic law (2). Before obtaining
the final results, it is necessary to determine the tangential and trans-
verse shearing forces on the boundaries. These forces may be derived
following Kirchhoff's theorem, see Reference (3).

Let SS and Ts be the resultant shearing force per unit length in
the transverse and tangential directions respectively due to shearing
forces and twisting moments in a plane normal to the s-direction and S

8

and Tg be those in a plane normal to O-direction. Then it can be shown

that
S_=Q_ + 1 M0 gecq
s s s
0
T =N - Ms@ tan a
s 80 5 (41)
= oMg
S = Qg * 5%
T = NQS

where QS and Qg are obtainable from the eéuilibrium equations (4),

Thus, by first combining solutions (31), (34) and (40) to obtain
the complete solutions and then substituting these complete solutious
into the elastic law (2) and equations (41) the resultant forces and
moments may be determined. Note, however, that if the order of magnitude

of the functions of y in U v and WII is the same as the order of kq

11’ 'II

then UI’ VI’ WI’ WII and, the particular solutions, are of the same order of
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k° while V.. is of k/™ and U._ is of k172

1T 11 {The assumption made will

be justified later by a numerical example). Hence as k approaches zero
asympototically,

U=0 +10T

V=V +V

W =W +W + W
Applying a similar argument to the resultant forces and moments yields

the following results:

L ) 7 c Cn C -4’1+MC%
= e ce— —.9__1 _—E'_L_' _Eﬁz S
U Es tan a Zn‘ an{mn 17 m -2(1-p) y m Zlmz 740 ] y
1, 1 1 1+
+ [Emn - E(S-D) -5 E;g + —(m —7+2>) 1nyly .}
C 2C 3C
- L 1 nl y—2 n y_Ll,
V= ES tan a % a‘n{mnz-l T nz 2(1 V) * mnz = A& 2p
+ 21301-2)) - m2]y2} sin 220
n 91 ;
W o= —L— Z a_ sc y2 4oy sc gyt
= EY TanZa n1 nzy Tby n4y
+ y"l[yfkcnscos(flny) + C ¢ sin (£1ny))
+ y_f(Cn7cos(f1ny) + C g sin (fIny))]
m 2 o
2 [ m2-7+22[ 1+ 1ny] yi} sin &= ,
3 n 91
oW _ 1 1 ? !
SST T g Zn‘ any {y [¢f-D Cos +an6) cos «§1lny)

+((f -1 CL6 TanS) sin (Plny)]+ y—f[(—{f+1)cn7 +fC_g) cos(flny)

; . N nro
- ((P+1) Cns +j’cn7) SLn(flny)J)- SLHZQT R
s tan a arl{— m _2(1_9)3 m —7+3 Y L42)

4

+ 32 [3m ZJyZJ} sin 28
6 n 1
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_ L nno
Ny 7 tans ;%7 any sin —5; >

=
1]

= = 6Cn4 -4 E_l _rﬁ
s NSQ TQ tan a Z {m (m S_7+2)) y -3 }ﬁ} cos gl »

_ L2 Kk 2 )
Ms = tanZa 2(1-»9 ‘2% aHYESygICRGCOS(flny) - CnSSln(flny)]
-y f[C geos(f1ny) - C, 31n(f1ny)1} sin _EE ,
1
MgzPMs)
3
g - L kf

s~ Tan% Wi 2 yfl {.yfl(—cn5+Dn6) cos(f Iny)
n

- (Cn6 + Cns)_ sin (f].HY) 1+ };-yI(Cn7 + Cn8) cos ()o 1ny)
+ (C g~Cp7 81n€f1ny)]} SInEEQ
1 b

L k. 2 -1 9
Se = T 1) Z Ay 7105 + b0 cos (P1ay)

+ (b.C

1®n6 - PoCps) sin (Plny) + y~* [(bIC

n7_b2Cn8) cos(f 1ny)

. nn o
+ (blcns + b20n7) sin (flny)y} cos Tﬁf ,

where b1 =

In the foregoing results, the two sets of homogeneous solutions are

Slw

1-») tan a, b, = % (2-9) m .

coupled only in the displacement W - the membrane forces are functions
of the first set and particular solutions while the moments and transverse
shearing forces are functions only of the second set of homogeneous

solutions.

4. An Example - The Engine Shround
Consider the case of an engine shroud as an example. The smaller

circular end of the engine shroud is fixed and the other end free.
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Thus requires:
Y _oOW _ _/Ll
U_v_w_as_o aty_T_g
(43)
N =M =T =8 _=0aty=1. (44)

The first four conditions are satisfied if, from the first four equations

of equations (36),

1 1 1 22 mn2 ~L(1+p) n
m 2-1 Cnl * m 2-2(1-7) —{2 an * m 2 Cn3 * m “lm “-7+2p] Z anL
n n n n n
(iv)
l 2 l _ - }. 1+P 1 2 2 -
+[3mn -5 (5-7) 2§zafgcmn -7+20) 1ngl 22 = 0
C
nl 2 1 3 1 1 27,2
mnz-—l + mnd—2(1-V) Zz Cr12 + ——z————mn 737 ZT qu + -6-[ 3(1—21>)—mn ]; =0
(iii)
A 2 1 -1 e
Cnl * e Cn2 2 cn3 * ? CnLl« te {é ICn5 cos(y Ing)
+ CnGSin(fln;)] + gjp[cn7cos(f1n;) + Cnssin(flni)l}
2
™n 2 by 2 e
+—-3—[mn-7+2][1+1n§]§ =0 (viii)

and
I3 ‘
g {I ($-1C o + cn6] cos (flng) + [(p-1) C6~5C, 5] sin (¢ 1ng)}
+;‘f{[-(f+1) Ch7 +5Chgl cos (PIn®) - [(4+1) C g +§C ] sin(f1n >}= 0
(vii)
The other four conditions at y = 1 yield:

1 3 1 21 .
2l iy On tarere Swd tpl3ml =0 Go

C6 - C8 =0 (v)
6 mn
& C - — =0 (i)
mn(mn -7+429) “ni4 3
-C + C + C + C =0 (vi)

n5 né n7/ n8
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The elght constants in this particular case may be determired, one

by one, by following the order of the equations indicated by Roman

aumerals, The results are as follows:
m 2-1 3(mn2—1) m_z

3 = n 2_ 5 N\, 2 Ii
C, = {Imn }1-2H1 52 + T g
-1 2 7, :
Co = -3 [mn - 2(1-»] (mnz_l)
1 1 } 1 147 1 .
= _ 2 — 2 _ = 2 S P 2_74
Ch3 “n {[3 Mg 5(5-7 2 E:Z] 3 My 7+2)) 1ng
m 2 + 2(1+9)
+2ln? - 3120)] + 2" 112 %
6 n 4—7_5—— Y éﬁ )
m2lm2 -7+ 2 2
c =0 n
nk 18
- L ( . v
Cn5 (2+8) Cn6 145"

where
_ FL(35-2)cos(eIlnD) -(g+D sin(p In gl 7[5 cos(s 1n £ ~(£+1) sin(s In4) ]
Flssin(f1n) -(F-1cos(¢InH 1+ £ ssin(s Ing)+(P+1) cos(r1ns} ]

2

m _ 3
e aanglg g og’ - o g
6 5&(2+B)cos(71né) + sinCe1n)] + £ [Beos(fIng) + sin{pln )|
G, = BCq
and
C8 = C6

The following data are used in the numerical computations:

o = 180°, a = 75°

, V=41, L= 373,312 (46)
1 3

Two types of lateral normal load are considered. One type is
symmetrical, the other, antisymmetrical. The symmetrical load is
assumed to be of form

P=psin © s 0<n (475
Hence refering to equation (9)
a_ =p for n =1

n

=0 for n> 1 {487
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The antisymmetric load is assumed to be of the form

4 u 1 . 4
P=3 /7; p (sin 0 + 3 sin 2 9), (49)
Thus
a = 5 3 £ =1
553 P or n =
1 b= .
_E (9(3—1)) o= 2

The two types of loading are depicted in Fig. (2).

Thus, for the cases mentioned above, only the solutions for n = 1
and 2 need to be carried out. The only parameter still to be determined
is the thickness t at s = L denoted by t'. The thickness is determined
by a trial-and-error method. To cover a wide range of the possible
thickness, t' = 0.4, 0.6" and 0.8" are assumed. Refering to equatious
(1) and {6a)” and (29) the corresponding values of k are computéd? and

given in Table 1.

TABLE 1. THE VALUES OF k AND §

t’ 0.4 0.6" 0.8"

. 18 -7 . -7
k 8.927 x 10 2,008 x 10 3,571 x 10
_f 153,48 125.32 108.53

Substituting the known quantities into expressions (45) the eight
constants are readily computed. In turn, the displacements and forces
may be obtained from equations (42). The computations have been pro-
grammed in Fortran Language and carried out by the University's Univac

Solid State 80 Computer. The results are presented in the following form

+ . a4 " :
For stiffened shells, see p.p. 22 and 23 Reference {1). For such cases,
instead of the thickness, the values of the parameter k are concerned.
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sin —
[
F(y,8) = Cf_(y)
n l cos 20 (51)
1z !
where C is a coefficient; C = 7 P for displacements C = L?p for
moments, C = Lp for forces and fn(y} are dimensionless functions, whose

numerical values are tabulated in Tables 111 to v, and depicted in

L

Figures 3 to 14, for T

=0.81 or 5: 0.90.
The assumption made in determining the order of magnitude of the
solutions that the functions of y are of the order of ko, now may be

justified by the following facts for the present case. The constants

C

Cn5’ n7’ and Cn

8° obtained from equations (39) are of the same order

as Cn6 which is of the order of g‘: Thus, the y-functions are of the
order of (?i-")f or k°. Because the bending effects are confined to a
narrow region near the fixed edge where y = .

In this example, the deflection of the free end given by Figures
(5) and (11), is comparatively large to the thickness. For such large
displacement, the theory is applicable provided that the shell is not

Is]a

overstrained Therefore the strains at the fixed end control the

validity of the results.

IV. CLOSING REMARKS

The key to the present solution lies in the development of a new
method of solving the algebric equation. The method is quite similar
to the so called perturbation method., The perturbation method., however,
is used in expanding differential equations.

This method is likely good for the present problem only. The
lateral deflection of cylinderical shells, for example, is governed by
the following equation, from Reference (4),

k Pw £(1-)2 vV = 0
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or

KE(A) + (1-)244 = 0
Let
2 _ .
A= X, * kxl,
then
y. -2 - 2 _
W E(x) + 2xx5(1-9%)] + (1-9)x? = 0
Therefore, x, = 0 but x, is not determined. Thus, this approach fails

o 1

although on = 0 does provide the roots of membrane theory.

The solution obtained is an approximate one. Its accuracy depends

(I

!

for smaller values of k and m. An estimate of the error involved ia the

on the parameters k and m = sec a), Better results will be obtained

example in using the asymptotic roots of A is made by comparison of the
asymptotic values with those computed from expressions (25) and (26).

The comparison is shown in Table 2, for 91 =n and a = 75°
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TABLE II. THE VALUES OF A
o.4" +0.999999 +1,0523 1
,Aé 0.6" £0.999997 +1,1142 +1
c.8 +0.999995 +1,1955 -1
0.4" +3.00003 +2.9851 £3
)\i 0.6" +3.00007 +2.9663 +3
0.8" +3.00013 +2,9397 +3
0.4 +153.27¢1.0027+1) £152.,75(1.0099+1) +153.48(1+1)
)\57 , . .. . s . A e
o5l c.6 +125.,09¢1.0035+1) +124,51(1.0149+%) $125,32¢0=1 )
0.8" +108.28(1.0045+1) +107.7701.9 +108.5%( 141
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It is clear that when n = 1, the solution will result in very good
accuracy. When n = 2, some error is introduced. However, the load
amplitude of the function for n = 2 is only one half of that for the
function of n = 1 in the case of the antisymmetrical load. Consequently
the error will be proportionally reduced. Thus, one may conclude that
the results presented in Figs. 3 to 14 would be good enough for practical
design purposes. Should a better error estimate be desirable, it is
necessary to elaborate the solutions based on the roots computed from
expressions (25) and (26). Nevertheless, the present solution is an
exact asymptotic solution.

This asymptotic solution helps in understanding how the displace-
ments and stresses function in a cone structure. The membrane displace-
ment and stresses predominate most of the region of the cone. The
bending effect is pertinent only near the supporting edges. This effect,
called edge effect or boundary layer phenomenon, has been observed in
spherical shells, in Reference [5]. The lateral displacement w functions
as a bridge between the membrane and bending effects,

The present results could be converted into solutions for a complete
cone by interchanging the sinusocidal functions in the displacements, As

a matter of fact, the eight roots of A remain in the same,
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APPENDIX I. ON THE APPLICATION OF THE RESULTS

Take the case when t' = 0,6" or k = 2,008 x 10_7 as an example for

the purpose of illustration. In what follows, only the displacement
of the free end and the forces at the fixed end will be concerned.
When the lateral load is symmetrical, the maximum values of the normal
displacement and forces are easily obtained by referring to Figures

3 to 8 and Tables III and IV. For example, taking E = 10 x 10% 1b.

per square inch, one has the following maximum values:

W= 2.433 x =P = 0.0564 p in. at 0 = 7,

M= 1.049 x 1007 L2 p= 146 p B2 ap g =T,

5 in 2
S =3.535 x 100 L p = 0.1320 p %% at 0 = 0, =,

- _ 1b -

T, = 0.2462 x L p = 9.7 p £ at 0 = 0, =,

1b _n

Ns = -0.1598 x L p = -59.6 p n at 0 = 5

where p is the maximum load intensity in 1b. per square inch. It
is negative when it acts toward the center of the cone,

When the load is antisymmetrical, the maximum displacements and
forces occur at angles which make the first derivative with respect

to 0 vanish. For example,

M = % J3 [1,049 sin 0 + % 1.447 sin 20 ] x 107712 p
Let

dMS

T 0
then

0 = 57%30°
and

M ] = 16.41 2n1b

s max in
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In a similar way,

N = - g [310.1508 sin 0 + 3 (0.4684) sin 20 ] L p
- 1b _ Onn,
Nstax = -101.2 p = at 0 = 51°00

2
W= % [312.433 sin 0 + 3 (7.282) sin 20] o P

Wl = 0.0974 p in at 0 = 51°00°
max
The following forces are maximum at O = O,
Sy = g [313.535 cos 6 + + (16.38) cos 20] 107 1 p
_ 1b

sg] = 0.3370 p =
T, = % [3'10.2462 cos 0 + % (0.4924) cos 20] L p

_ 1b
Ts]max = 141, p o

Note that there are considerable differences between the results

of the symmetrical and antisymmetrical loadings at the same load
intensity.

The order of magnitude of the transverse shearing forces, SO’ in
both the cases of symmetrical and antisymmetrical loadings is the
lowest among the forces. Further, the small shearing forces carried
by supports along the two straight edges are appreciable only near
the fixed end of the segment, as is shown by the curves for Sg in
Figures 6 and 12. This fact justifies the alteration of the free
straight edges of the engine shroud to edges which are free from
normal moments and forces but not transverse shearing forces,
However, the computed shearing forces should be taken into consider-

ation in the design of the side edges.
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APPENDIX II. NOTATION

The following symbols have been adopted for use in this report:

a
n
A ,B,
n n
ij
D
E
G, g,
k
K
L, Ly
mo, m
Ms’ MG
MsQ' MOs
Ns’ NO
NsO’ NOs
Ps, Pg’
QS, QQ

coefficient of lateral normal loads defined in Eq. (9):
coefficients of solutions of displacements defined in
Eqs. (8);

coefficients given by Eqs. (13);

tensional rigidity of shell = ngg;

Young's modulus of elasticity;

coefficients defined in Eqs. (18);
g2
12 °

bending rigidity of shell = Ti?%é%zj;

parameter of bending effect =

distances measured from the apex along the conical sur-
face to the free end and fixed end of the segment of

the cone respectively;

nr
8,

normal moments per unit length in planes perpendicular

sec a

to s and 6 directions;
twisting moments per unit length in planes perpendicular
to s and 0 directions respectively;
normal forces per unit length in planes perpendicular to
s and 6 directions respectively;

tangential shearing-forces per unit length in planes
perpendicular to § and O directions respéctively;
surface loads per unit area in the directions of s, 0

and the normal-to-the-middle-surface respectively;

= transverse shearing forces per unit length in planes

perpendicular to s and @ directions respectively;



S

Ss’ SQ

t

t'

Ts’ TG

U, V, W
Ulv Vlr W1

Uiy Vig, Wig
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distance measured from the apex along the conical
surface;
resultant transverse shearing forces due to QS, Qg,
MSg and MQS;
thickness of shell;
thickness of shell at s = L;
resultant tangential shearing forces due to NSQ,
Nos® Mgg and My s

components of displacement in the directions of s,

@ and the normal-to-the-middle-surface directions
respectively;

first set of homogeneous solutions of U, vV, and W;
second set of homogeneous solutions of U, V, and W,
particular solutions of U, V, and W,

unknowns defined in Eq. (19);
/?,

I3

angle between the conical surface and a plane perpen-

dicular to the axis of the cone;

constant defined in Eq. (25);
t

)

s

angle between two meridians;

angle between two edge-meridians of the shell segment;
characteristic constant defined in Eq. (11);

eight roots of A, i = 1,2,3 and 4, j = 5,6,7 and 8.

Poisson's ratio
9



. c40
[ =J§(g)1/u
2 K
Differential Notation: Differentiation with respect to s and 0

coordinates are indicated by dot (-) and prime (,) respectively.
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APPENDIX D

LITERATURE SURVEY WITH ABSTRACTS

Prepared by

Raymond C. Montgomery

This appendix was previously submitted as Technical Report D for
contract NAS 8-5168,



Technical Report D for NASA Contract NAS8-5168 %

Literature Survey With Abstracts ! E% L‘}‘
Prepared By ii;l—'

Raymond C. Montgomery

During the performance of NASA Contract NAS8-5168, a literature
survey was undertaken to identify current publications pertaining to
the subject matter included in the work .scope of this contract.
Through the facilities of the Office of Scientific Information of NASA
and the Defense Documentation Center for Scientific and Technical
Information, copies were obtained of many of the publications that
appeared to contain information of value to the members of the project
staff. Abstracts were prepared of those publications that contained
particularly useful data or information.

This report is presented in two parts. Part I consists of a list
of all the publications that have been obtained and are now available
for use in the Library of the Department of Aerospace Engineering.
Part II consists of the abstracts that were prepared during the per-
formance of Contract NAS8-5168.

Part I - List of Publications

l. Abraham, L. H. and Lowy, M. J.: Shell Instability Problems as
Related to Design. NASA TN D-1510, December 1962, pp. 1-10.

2. Air Force Systems Command: Proceedings of Symposium on Aerothermo-
elasticity. Aeronautical Systems Division, Air Force Systems
Command, Wright-Patterson Air Force Base, Ohio, Technical Report
61-645, February 1962.

3. Alesch, C. W.: The Flexure Toughness Concept. General Dynamics
/ Convair, San Diego, California, Engineering Research Report ERR-
SD-169, January 1962.

4. Allentuch, A. and Kempner, J.: Stresses in Eccentric Stepwise Dis-
continuous Reinforcing Rings with Transition Section. Polytechnic
Institute of Brooklyn, PIBAL Report No. 651, December 1962.
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6.

Te

8.

9.

10.

12.

13.

L.

15,

16,

D2

Allinikov, S.: Cylindrical Sandwich Construction Design.
Wright Air Development Division, WADD Technical Report 60-133,
February 1960, .

Amiro, I. Y.: Investigating the Stability of a Ribbed Cylindrical
Shell During Longitudinal Compression. Foreign Technology Divi-
sion, Air Force Systems Command, FTD-TT-62-1622. (Translated

from: Ukrainian Periodical, Prykladna Mekhanika, Vol.6, Nr.3, 1960,
ppe 272-280,)

Amiro, I. Y.: Studying Maximum Load for Ribbed Cylindrical Shells
Subjected to Simultaneous Effect of Axial Forces and Internal
Pressure. Foreign Technology Division, Air Force Systems Command,
FTD-TT-62-1625. (Translated from: Ukrainian Periodical, Prykladna
Mekhanika, Vol.7, Nr.5, 1961, pp. 496-502.)

Anderson; M. S.: Combinations of Temperature and Axial Compression
Required for Buckling of a Ring-Stiffened Cylinder. NASA TN D-1224,
April 1962.

Anderson, M. S.: Buckling of Ring-Stiffened Cylinders Under a Pure
Bending Moment and a Nonuniform Temperature Distribution. NASA
TN D-1513, November 1962.

Anderson, M. S.: Thermal Buckling of Cylinders. NASA TN D-1510,
December 1962, pp. 255-265.

Ando; No: On the Strength of the Orthogonally Stiffened Plate--lst
Report——Theoretical Solution of Orthotropic Plate Subjected to
Bending, Ministry of Transportation, Tokyo, Japan, March 1962.

Ando, N.: On the Strength of the Orthogonally Stiffened Plate--2nd
Report--Experimental Studies on Bending of Orthogonally Stiffened

Plate and Comparison with the Bending Theory of Orthotropic Plate.
Ministry of Transportation, Tokyo, Japan, November 1962,

Antebi, Jo, Smith, He D., Sharma, S. D., and Harris, He Go:
Evaluation of Techniques for Constructing Model Structural Elements.
Massachusetts Institute of Technology, Research Report No. R62-15,
May 1962.

Armenakas; A. E., and Herrmann, G.: On the Buckling of Circular
Cylindrical Shells Under External Pressure. Columbia University,
Project 9787, Contract AF 49 (638)-430, Technical Note 7, August
1962,

Ashwell;, Do Go: The Equilibrium Equations of the Inextensional
Theory for Thin Flat Plates. Quarterly Journal of Mechanics and
Applied Mathematics, Vol. 10, 1957, pp. 169-182.

Au, T. and Hribar, J. Ao: On the Solution of Thin Elastic Shells
of Revolution. Journal of Aerospace Science, Vol. 28, No. 6, June
1961, pp. 510-511.



17,

18.

19.

20.

21,

23,

2k

25,

26,

27

28,

29,

b3

Babcock, Co Do: The Effect of Initial Imperfections on the Buck-
ling Stress of Cylindrical Shells. NASA TN D-1510, December 1962,
pp. 135-142.

Baird, Be Lo: Studies of Design Criteria for Welded Structures
Subjected to A Biaxial Stress Field. Aeronautical Systems
Division, Air Force Systems Command, Wright-Patterson Air Force
Base, Ohio, Technical Documentary Report No. ASD-TDR-62-1109,
January 1963.

Battelle Memorial Institute: A Guide to the Scientific and
Technical Literature of Eastern Europe. National Science Founda-
tion, NSF=62-49, October 1962.

Becker, He and Gerard, G.: Torsional Buckliﬁg of Moderate Length
Cylinders. Journal of Applied Mechanics, Vol. 23, No. 4,
December 1956, ppe 647=648.

Becker, H.: Handbook of Structural Stability, Part II- Buckling
of Composite Elements. NACA TN 3782, July 1957.

Becker, Ho.: Handbook of Structural Stability, Part VI-Strength
of Stiffened Curved Plates and Shells. NACA TN 3786, July 1958,

Becker, H., Gerard, G. and Winter, R.: Experiments on Axial
Compressive General Instability of Monolithic Circumferentially
Stiffened Cylindrical Shells. New York University, Research
Division, Technical Report No. SM 62-5, May 1962,

Berkowitz, H. M.: Elastic Deformations of Conical Shells, Equation
of Equilibrium for Large Elastic Deformations of Relatively Thin
Turncated Conical Shells. Fairchild Stratos, Aircraft Missles
Division, FS-AMD, R 62-1, September 1962.

Bijlaard, P. P.: Stresses From Local Loadings in Cylindrical
Pressure Vessels. Transactions A.S.M.E. Vol. 27, 1955, pp. 805=
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l. Amiro, I. Y.: Investigating the Stability of a Ribbed Cylindrical
Shell During Longitudinal Compression. Foreign Technology Division,
Air Force Systems Command, FTD-TT-62-1622. (Translated from: Ukrainian
Periodical, Prykladna Mekhanika, Vol.6, Nr.3, 1960, pp. 272-280.)

Critical buckling stress in stiffened circular cylinders with dis-
crete stiffeners with rigid closed ends is considered for the case of
longitudinal compression.

A form of the buckled mode shape is used that is consistent with
the predictions of thin shell theory (without discrete stiffeners). The
assumed mode shape is introduced into the compatability relation yield-
ing a stress function. The internal energy is expressed as the sum of
the energy stored in the shell, the stiffeners, and the bulkheads. An
expression for the energy of the external forces is also written. To
these expressions, the principle of minimum potential with respect to
the amplitudes of the mode shape is applied yielding two simultaneous
equations in the mode shape amplitudes. Orthogonality is applied to un-—
couple these equations. From the resulting equations the c¢ritical stress
was obtained. The criticnl stress reduces to the well known value in the
case of a thin shell without stiffeners. For each problem it is neces-
sary to minimize the expression for the critical stress with respect to
the wave length parameters.

General instability and individual problems arising when restric-
tions were placed on the deformations of the longitudinal and circular
stiffeners (9 cases including general instability) are considered for a
specific cylinder with a radius of 100 centimeters and a thickness of 0.4
cm. Data is reduced and presented in tabular form. Calculations are
made for various numbers of half wave lengths ranging from 4 to 31 in the
tangential direction and from 1 to 63 in the longitudinal direction for
the general instability case and two of the restrictive cases. It was
generally found that an increase in the length yields a decrease in the
critical stress.

Another specific example uses a cylinder with a length of 628 cm.,

a radius of 100 cm., and a thickness of 0.4 cm. reinforced with 2 longi-
tudinal ribs and from 1 to 3 circular ribs with uniform spacing. General
instability and 5 other restrictive cases were considered. Data for the
lowest value of ecritical stress obtained by varying the half wave para-
meters is presented in tabular form along with the number of half waves
in the longitudinal and tangential directions corresponding to the lowest
critical stress. Orthotropic results are also compared in tabular form.
The results are similar for general deformation (orthotropic theory pre-
dicts slightly lower critical stresses) but for the restrictive cases

the critical stresses predicted by orthotropic theory are shown to be

LO per cent lower in some cases.

The author is at Academy of Sciences, Ukraine SSR, Institute of Mechanics.
3 References.
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2. Amiro, I. Y.: Studying Maximum Load for Ribbed Cylindrical Shells
Subjected to Simultaneous Effect of Axial Forces and Internal Pressure.
Foreign Technology Division, Air Force Systems Command, Wright-Patterson
Air Force Base, Ohio, FTD-TT-62-1625/1 2, January 1963.

A method is presented for determining the critical buckling load for
ribbed cylindrical shells subjected simultanecusly to axial load and in-
ternal pressure. The critical axial load was determined by the energy
method. Possible buckling modes are discussed for discrete ribs. An
idealized cylinder without ribs is used to describe the deformation shape
of the skin.

The elastic stability is first considered by substitution of an
assumed buckled mode shape into the compatibility and equilibrium equa-
tions to obtain the stress function. An expression for the critical
longitudinal stress is derived from the principle of minimum potential.
Buckling mode shapes are discussed for the general case and for the
cases where the longitudinal or circular ribs, or both, are restricted
to bending or twisting. Eight possibilities other than the general case
are considered. A table is presented that relates the number of half
waves to the cylinder parameters for the general and the eight restricted
cases. Extension is made into the plastic region by introducing as the
stress the yield stress.

A chart is presented for the critical load as a function of pressure
for 27 half waves in the tangential direction and for 50,100 and 150 half
waves in the longitudinal direction for a shell with a radius of 4.5
meters, a length of 26 meters, a thickness of 0.5 cm., and 54 ribs. Cal-
culations indicate that the critical axial load is similar to that pre-
dicted by orthotropic shell theory. A table is presented that compares
the results of this analysis with orthotropic shell results.

The author is at Academy of Sciences, Ukraine SSR, Institute of Mechanics.
5 References.

3. Anderson, M. S.: Combinations of Temperature and Axial Compression
Required for Buckling of a Ring-Stiffened Cylinder. NASA TN D-122i,
April 1962.

A theoretical analysis is presented for the buckling of cylinders
subjected to both axial compressive and thermal stresses for simply sup-
ported and clamped end conditicns. The basic analysis considers the
cylinder walls at a uniform temperature and rings at some lower tempera-
ture. Axial compression and temperature combinations necessary to cause
buckling are determined by expressing beth the variation of circumferen-
tial stresses produced by a uniform axial stress and circumferential
stresses resulting from the temperature distributicn in a Fourier series
expansion. Batdorf®s modified equilibrium equation is used in the cir-
cumferential stress analysis for the case ¢f uniform axial compression.
The series expansion for deflection is substituted into the equilibrium
expression yielding an infinite stability determinant that is convergent
for both clamped and simply supported edge conditicons——unlike Donnellfs
eighth order equation which is possikly divergent in the 2ase of clamped
cylinders. In addition to usual small deflection theory assumptions,
rings are assumed to be rigid against radisl loads but are allowed to
expand due to temperature gradients.
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Theoretical results are presented in tabular and graphical form
and compare favorably with empirical results of another investigation.,
flesults are presented as a buckling temperature coefficient plotted
against the cylinder curvature parameter for various values of the ratio
of applied axial stress to the classical buckling stress. These inter—
action charts cover a wide range of cylinder proportions and curvature
parameters. Curvature parameters from one to 1,000 are considersd and
temperature variations from O°F to 600°F are considercd for aluaimu:
2024 T-3 alloy cylinders.

It is concluded that, for moderate to large values of curvature
parameters, the buckling temperature of a cylinder is essentially inde-
pendent of length and that the buckling temperature in the case where
only thermal stresses are considered is beyond the range of use of most
materials. It is also determined that a cylinder can endure large changes
in axial load without a significant reduction in buckling temperature.

The author is at Langley Research Center.
6 References.

L. Anderson, M. S.: Buckling of Ring-Stiffened Cylinders Undor a Pure
Bending Moment and a Nonuniform Temperature Distribution. ..isA 1 N-1513,
November 1962.

An experimental investigation is undertaken to determine the effect
of axial and circumferential thermal stresses and load-induced stresses
on the buckling of cylinders. Experimental results are compared with
theoretical results obtained from an analysis presented in the appendix
and a former analysis (NASA TN D-122,) for determination of load—induced
stresses of buckling.

The analysis presented in the appendix is an extension of the method
presented in NASA TN D-1224 by M. S. Anderson. The significant differ-
ence is that axial variations in the temperature distribution are ac-
counted for by assuming a constanl temperature in each of several bays.
Bay length is not necessarily the length between circumferential ring
stiffeners but is dependent on the desired accuracy in representation of
the axial temperature distribution.

Thirteen cylinders with type 301 stainless steel walls and type 304
stainless steel spun Z-section rings were tested in pure bending. All
cylinders were 19 inches in diameter and 45 3/L inches long with a nominal
wall thickness of 0.030 inches and a resultant value of radius to thick-
ness ratio of approximately 300. Rings were 11 in Z-sections with 3/4
inch flanges. Two ring spacings were used with spacing to radius ratios
of 1 and of 4. Cylinders were fabric-%:! of sheet material with 3 longi-
tudinal spot welded splices. Specimuen ilciails are presented in drawings.

Loading was accomplished by mounting the specimen to a heavy back-
stop and applying a pure bending moment by means of a pin-connected
loading frame. Precautions were taken to eleminate shearing forces on
specimens. Two cylinders with a ring spacing to radius ratio of % and one
cylinder with a ring spacing to radius ratio of 1 were tested in pure
bending at room temperature to obtain data for comparison. The signifi-
cant difference between the tests at room temperature and the tests with
heating is that in the case of the room temperature tests, the load was
applied by means of hydraulic jacks rather than by a pin-connected
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loading frame. Tests with heating were accomplished by loading the
specimen in bending to some load less than the classical buckling load
and heating the structure at a rate of 25° F/second until buckling oc-
curred. The vertical deflection at the end of the cylinder was re-
corded continuously to determine the instant of buckling. End moments
were varied and a buckling interaction curve for load-induced stress
- and temperature was obtained.
Results of the investigation are given in tabular and graphical
form. Maximum load-induced stress is plotted against the temperature
of the extreme compressive fiber between stiffener ringss for both uni-
form and nonuniform heating. Temperature distributions are also plotted.
Results indicate that elementary thermal stress theory is inadequate
for prediction of buckling loads of cylinders under nonuniform heating.
An analysis is presented that shows reasonable correlation with experi-~
ment.

"+: author is at Langley Research Center.
i References,

5« Ando, N.: On the Strength of the Orthogonally Stiffened Plate--1st
Report~-Theoretical Solution of Orthotropic Plate Subjected to Bending,
Ministry of Transportation, Tokyo, Japan, March 1962.

Orthotropic plate theory is applied to the analysis of orthogon~ 11y
stiffened rectangular plates. Three approximate methods are considered
-~the grid structure method, the energy method, and orthotropic plate
theory. The basic differential equation is presented and the form of
solution is discussed with particular attention paid to boundary condi-
tions.

A theoretical solution to the fundamental differential equation is
obtained as the sum of the general and particular solutions. The form
of the particular solution is discussed for various types of loading--
uniformly distributed load, hydrostatic pressure, concentrated line
load, and symmetrically positioned concentrated loads. For simply sup-
ported edge conditions, solutions are derived for a distributed load in
a rectangular dom:in, o line load, a concentrated load, a moment distrib-
uted along an axis ol the plate, and a distributed loading over a general
area on the plate. For the case of two edges simply supported and two
built in, solutions are obtained for a distributed load in a rectangular
domain, a line load, and a concentrated load. For the case of two edges
simply supported and a moment distributed along the other, both sy
metric and antisymmetric moment distribution solutions are obtainci. &
solution is also obtained for the case of three edges simply supported
and the other free.

A solution is obtained for the case of two edges fixed and a moment
(istributed along the other edges. Exact and approximate solutions ob-
tained for the case where all edges are fixed. Deflections at the cen-
ter of the plate are calculated by the exact and approximate methods and
are presented in tabular form for plates of various aspect ratios.

A solution is presented for an orthotropic plate partly stiffened
by a large stiffener. Further extension of theory is presented for the
case of continuous plates. Deflection distribution along the longitudi-
nal of a continuous plate is shown graphically for various load ratios.
Theory is also extended to a rectangular box composed of orthotropic
plates,
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The author is at Ministry of Transporation, Tokyo, Japan.
54 References,

6. Armenakas, A. E., and Herrmann, G.: On the Buckling of Circular
Cylindrical Shells Under External Pressure. Columbia University, Project
707, Contract AF 49 (638)-430, Technical Note 7, August 1962.

A bending theory previously presented by the authors is employed
to determine the values of hydrostatic and constant-directional pres-
sure to cause buckling of circular cylindrical shells. Inadequacy of
equations previously developed by other authors is primarily attrib-
uted to the negation of the change in direction and magnitude of applied
pressures resulting from deformations.

Changes in pressure, forces, and moments are expressed in terms of
a non-orthogonal set of unit vectors and unit elongations. The non-
orthogonal set of unit vectors arise from the orthogonal set of unit
vectors describing a surface element undergoing deformations. Solutions
of deformations are then assumed and introduced into the equilibrium
equation resulting in three homogeneous algebraic equations whose condi-
tional solution yields the buckling pressure. Underlying boundary con-
ditions for the assumed deformation solutions are discussed. Equations
for the buckling coefficient are then presented for both the hydrostatic
and constant-directional pressure cases. A discussion follows relating
to the terms in the buckling coefficient equations. It is shown that a
shell cannot buckle under external constant-directional pressure but may
buckle under external hydrostatic pressure.

Approximate formulas are presented resulting from consideration of
the number of axial half waves. It is shown that unless the shell dimen-
sions are conducieve to buckling, the effect of the nature of the applied
pressure is negligible. Charts are presented that allow the determina-
tion of the mode for the cylinder parameters: length to radius ratio and
thickness to radius ratio. The charts are needed for use in the equa-
tions for the buckling coefficient.

Theoretical results of other investigators are compared graphically
and it is shown that the equations of von Mises, Loo, and Batdorf are
applicable for various ranges of shell parameters.

The authors are at Columbia University.
1), References.

22. Becker, H.; Handbook of Structural Stability, Part VI-Strength of
Stiffened Curved Plates and Shells. NACA TN 3786, July 1958.

A comprehensive review of the theories of instability failures of
plates and shells is presented. General instability of circular cylin-
ders is discussed where loadings considered are bending, external pres-
sure, torsion, transverse shear, and combinations of these loading condi-
tions. The primary objective of the report is the examination of the
methods of predicting bending and torsional general instability failure
in stiffened circular cylinders.
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The theory of Taylor is used as the basis for analysis. Lack of
agreement of previous papers on general instability is attributed to
the evaluation of pertinent section properties and rigidities. The ap-
proach of Hoff in which the energy increment is minimized is also dis-
cussed. Experimental results from tests conducted at Guggenheim Aero-
nautical Laboratory, California Institute of Technology (GALCIT) and the
Polytechnic Institute of Brooklyn, Aercnautical Laboratory (PIBAL) form
the basis of an empirical approach presented. Test data from GALCIT and
PIBAL are presented in graphical form. Effects of plasticity on failure
stress are considered and a reduced modulus (secant modulus) is proposed.

Minimum weight design is discussed using the mathematical formula-
tion of Gerard. Fundamental concepts of minimum weight analysis in
general are reviewed and the application to stiffened cylinders in bend-
ing is presented where the minimun weight conditions of a stiffened
cylinder in bending are stated.

Theoretical and analytical results of PIBAL for stiffened circular
cylinders with cutouts is presented. Theoretical analysis follows the
energy approach where the cutout is included in the analysis by repre-
senting the buckled form as a sine wave extending the length of the cut-
out and by a Fourier series (7 terms) extending in the circumferential
direction. PIBAL theory predicts the critical moment accurately for
symmetric cutouts but the instability stresses predicted range to 35 per
cent greater than tests indicate. An attempt to predict instability in
the case of side-cutouts failed.

A section of this report is devoted to pressure instability. Avail-
able theoretical data are collected since no tests are currently avail-
able. Moderate-length and long circular cylinder theoretical develop-
ments are presented. :

Problems of effective widths and appropriate section parameters to
be used in the equations are discussed. Data for all cases are presented
graphically.

Hayashit's method for torsional instability covering the entire length
range is discussed. Hayachi used an implicit form of instability and in
this report explicit data are presented in tabular form. A discussion
of pertinent section properties along with effective widths for torsion
is presented. GALCIT test data, applicable to moderate length ranges,
are used as a basis for comparison.

No formal analysis is presented for the case of transverse shear
instability due to the lack of a published theory. GALCIT data for canti-
levered torsionally loaded cylinders are applied to obtain a conservative
(15 per cent) empirical expression.

Combined bending and torsion are treated by interaction equations.
Interaction curves that are parabolic and circular are found to include
the test data and serve as upper and lower bounds. Test data and analy-
tical data are presented graphically.

The author is at New York University.
56 References.



I A S Bl By - N B AU BN TN BN WD S B BN Em e

D 30

8. Becker, H. and Gerard, G.: Elastic Stability of Orthotropic Shells.
Journal of Aerospace Sciences, Vol. 29, No. 5, May 1962, pp. 505-513,
520.

Objectives are twofold: (1) to correlate available experimental
data on elastic stability of orthotropic shells that fail due to ex~
ternal pressure, torsion, or axially compressive loading; and, (2) to
use the Batdorf modification of the Donnell eight order equilibrium
equation to obtain solutions for zero length to long range orthotropic
cylinders covering a wide range of curvature parameters.

Possible buckling modes, characteristics of attachment of the
cylinder-stiffener combination, and the theoretical treatment of the
skin stiffening system are discussed. Taylort!s governing differential
equation is presented based on elastic behavior, linear small-deflec-
tion theory, and a Poisson's ratio of zero. The underlying assumptions
of the Taylor differential equation are discussed. Also included in
the preliminary discussion is the effect of pressurization on the
strength of cylinders with initial imperfections. Distinction is made
between the actual and the geometric stiffnesses of cylinders. In the
case of axially compressive loading, this distinction becomes of vital
importance.

The approach used assumes a reasonable solution to the Donnell
equation (primarily dictated by boundary conditions) and obtains the
buckling coefficients as a function of buckle mode parameters and curva-
ture parameters for each loading case by differentiation as dictated by
the Donnell equation. The expression is then minimized for the case of
a flat plate (curvature parameter of zero) for appropriate length
ranges. Due to mathematical complexities the buckling coefficient is
necessarily minimized numerically in the short cylinder range. The re-
sults are plotted against a unified set of non-dimensional isotropic
shell parameters for cylinders of varying length.

Results of the theoretical investigation are compared with experi-
mental findings from other investigations. Both orthotropic and iso-
tropic cylinder data compare favorably with theoretical data for pres-
sure instability. Torsional instability results are compared with iso-
tropic cylinder theoretical results by Batdorf. For the axially com-
pressive case, the experimental data are severly limited and only one
point is available for comparison. This information is obtained from
an experimental investigation using a 2014-T6 aluminum alloy cylinder
7 feet in diameter, 4 feet in length, and with a 0.055 inch skin thick-
ness. The cylinder was integrally stiffened with rings that have a
depth of 0.125 inches and a thickness of 6.195 inches. The rings were
spaced at 1.75 inch intervals. Agreement, in this case, is excellent
but further experimental investigation is deemed necessary.

The authors are at New York University.
18 References.

9. Becker, H., Gerard, G. and Winter, R.: Experiments on Axial
Compressive General Instability of ljonolithic Circumferentially Stiffened
Cylindrical Shells. New York University, Research Division, Technical
Report No. SM 62-5, May 1962.

An experimental program is conducted on machined orthotropic
aluminum alloy cylinders with ring stiffeners under axially compressive
loading to investigate the general instability characteristics of
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stiffened cylinders. Linear orthotropic stability theory is used to
predict the buckling load and mode shape for moderate length cylinders.

Care is taken to assure that no mode other than the general in-
stability mode occurs during testing. Tests were conducted on two
isotropic and twelve ring stiffened circular cylinders loaded in axial
compression. The cylinders were nominally 8 inches and 24 inches in
diameter. An analysis performed on a 7 foot diameter cylinder is also
included. Variations in ring spacing, ring details, and shell thickness
were incorporated in the specimens., All cylinders were made of 2024-T3
aluminum alloy except two specimens that were made of 2014-T6 aluminum
alloy. Geometric, structural, and theoretical and experimental buck-
ling stress data are presented in tabular form for all cylinders. Six
of the cylinders were formed by threading rings on a lathe to obtain a
more uniform cylinder wall and rib geometry. Ends of the cylinders
were faced to a maximum variation of 0.0005 inches throughout the end
planes. Ends of one model were encased in transparent epoxy rings for
photoelastic analysis. No significant variations in fringe patterns
are observed in the test. Details of the three end conditions used are
presented.

Data are presented in terms of both the average measured thickness
and the minimum measured thickness. Due to uncertainty as to which
value should be used in theoretical analysis, structural parameters
(dimensionless length and buckling coefficient) are calculated for
both average and minimum thicknesses. Structural mode parameters are
calculated for only the average thickness. In addition to the general
instability load, data was obtained for buckle geometry and post-buck-
ling behavior of each specimen. Photographs of the post-buckled state
of the cylinders are presented.

The cylinders investigated failed in general instability with no
other mode present. Data indicate that linear theory is adequate for
prediction of the load carrying capacity of monolithic ring stiffened
circular cylinders.

A lower limit of application of linear orthotropic theory is ten-
tatively set in terms of the two structural parameters obtained from
asymmetric theory. The transition from isotropic to orthotropic be-
havior in the region not considered in this program still requires in-
vestigation. Excellent agreement with theory is obtained from both 24
inch and 8 inch diameter cylinders indicating that no significant size
effect is associated with the circumferentially stiffened cylinders
tested.

The authors are at New York University.
7 References.,

10. Berkowitz, H. M.: Elastic Deformations of Conical Shells, Equation
of Equilibrium for Large Elastic Deformations of Relatively Thin
Turncated Conical Shells. Fairchild Stratos, Aircraft Missles Division,
FS-AMD, R 62-1, September 1962.

Determination of approximate equations governing the large-deforma-
tion behavior of relatively thin, truncated, elastic conical shells sub-
jected to arbitrary loading on all surfaces is considered.

Discussion is restricted to elastic materials whose stress is de-
rivable from an elastic potential. The form of the elastic potential
used is the same as that of linear small deflection theory. Using
the elastic potentialystress is expressed in terms of strain. The
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relation is shown to reduce to the isotropic stress relation for an
elastic medium. For the purpose of illustration only isotropic ma-
terials are considered further.

The author i &b _oidrchild-Stratos.
12 Referenceo.

11. Card, M. F. and Peterson, J. P.: On the Instability of Ortho-
tropic Cylinders. NASA TN D-1510, December 1962, pp. 297-308.

Preliminary results of an experimental investigation of the
buckling strength of laterally and longitudinally stiffened cylinders
and filament-wound glass-cpoxy cylinders are compared with instability
calculations based on . 11 deflection orthotropic cylinder theory.

Calculations are performed to study the effect of certain stiff-
ness parameters on calculated buckling loads for the laterally and
longitudinally stiffened cylinders. From these calculations it is
determined that, throughout the range of uncertainty of the stiffness
parameters, the extensional modulus in the circumferential direction
and the twisting stiffness are not the cause of discrepancy in calcu~
lated buckling strengths. It is thus determined, by elimination, that
the source of the discrepancy is the estiin..’ “aluecs of wall stiffness
in bending and in wall shearing stiffness. .nollier calculation is
performed to determine the likelihood of panel buckling as a source of
the discrepancy. It is found that the cylinder with the largest
lateral stiffener spacing may have failed in panel bucklin: “ut that
this was unlikely in the case of the other cylinders.

Laterally and longitudinally stiffened cylinders were tested in
bending. Cylinders were 77 inches in diameter and weres stiffened with
Z-section stringers and hat-section rings. GClass v eylinders wers
15 inches in diameter and tested in axial compression. mpoxy cylindoers
were constructed with both circumferential and helical windings to a-
chieve orthotropic properties.

Stiffnesses of the filament-wound glass-epoxy cylinders are deter-
mined from the equations of elasticity for orthotropic materials. The
epoxy wall experienced plastic deformation that subsequently lowered
the buckling load for helical winds of 45° to 67:° but for a helical
wind of 25° the cylinders appeared undamaged by plastic deformation.
The 25° helically wound cylinders did experience lower buckling loads
on reloading. Excellent agreement between theory and experiment is
attributed to the low radius to thickness ratio (in the order of 125)
of the 25° helically wound cylinders. Previous studies indicate buck-
ling loads of cylinders with low radius to thickness ratios deviate
little from theory.

It is concluded that, in the case of laterally and Jongitudinally
stiffened cylinders, wall stiffness in shear and the circumferential
bending stiffness need belbtcir 1afinition. With respect to the glass
epoxy cylinders, the mode o. Inilure needs better definition to deter-
mine significant stiffness and plastic reduction parameters. Further-
more, even small rings affect the instability mode and further testing
is necessary to establish a quantitative effect on panel instability.

The authors are at Langley Research Center.
9 References.
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12. Connor, J. J., Jr.: Elastic Buckling of Axially Compressed, Thin,
Unreinforced Cylindrical Shells. Watertown Arsenal Laboratories, WAL
TR 836.3212, January 1960.

A survey of literature pertaining to the behavior of axially com-
pressed, thin, unreinforced cylindrical shells is presented.

For unpressurized shells, small deflection or classical theories
by Donnell whose work is extended to edge warpage in the axial direc-
tion and Batdorf whose work using the Galenkin approach to Donnell's
modified equation includes clamped and edges free to warp in the circum-
ferential direction are presented and discussed with emphasis on the
validity and applicability of underlying assumptions.

Also, for unpressurized shells, semi-empirical approaches are dis-
cussed. The work of Batdorf is briefly discussed. A semi-empirical
method presented by Harris et. al. similar to the work of Batdorf is
discussed at length. All length ranges including short, intermediate,
and long are discussed for cylinders with clamped edges. Cylinders
with simply supported edges are also included in the discussion. De-
sign charts are presented in which semi-empirical and small deflection
theories are compared.

Post buckling beiaavio. o umressurized shells is also discussed.
Original work by Donnell is discussed. An extensive discussion of the
work by von Karman and Tsien is presented and the derivation of equilib-
rium and compatability equations is presented in the appendix. Effects
of imperfections are discussed along with a brief discussion of classi-
cal finite deflection stability criterion.

For pressurized shells, a finite deflection stability criterion
formulated by Lo, Crate, and Schwartz is discussed along with their ex—
perimental observations. A discussion of the effect of internal pres-
sure on the buckle mode is included along with a brief discussion of
plastic buckling of shells. Results of experimental investigations by
Harris et. al. and Fung and Sechler are presented graphically. Semi-
empirical analyses are discussed and theoretical and recommended design
data are presented graphically.

The author is at Watertown Arsenal.
22 References.,

13. Findley, W. N.: Theories Relating to Fatigue of Materials Under
Combinations of Stress. Engineering Materials Research Laboratory,
Division of Engineering, Brown University, U. S. Army Ordinance Corps,
Contract DA-19-020-ORD-3520, Project - .1 (134,8), Technical Report
No. 2, June 1956.

The mechanism of fatigue of materials is discussed. Some of the
primary factors that induce resistance to fatigue fracture are discussed
in elastic and plastic loading regions. The origination of fatigue
cracks is explained for every combination of stresses by a single fa-
tigue mechanism theory using as the basic hypothesis the transition from
shearing slip to tensile separation including the effects of anisotropy
of the material.

Effects of static stresses are discussed extensively considering
the effects of tension and torsion. A4 series of three tests on 75-S-T
aluninum is mentioned consisting of a test at zero mean stress, a test
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that initially induces yielding and a load reversal to the minimum
cyclic stress, and a test at a high mean stress using the same approach
as is used in the second test,

six of eight theories for combined bending and torsion are reduced
to a single expression which is equivalent to the Gough empirical el-
lipse quadrant. The principle stress and strain theories are reduced
to parabolic and elliptic areas respectively.

Fatigue tests are reported that cxolored the influence of aniso-
tropy. Tests were made on threec alloys (765-161, 255-T6, and SAE 4340
steel). The tests support the conclusions of the effect of anisotrop:.
Variations in the bending to torsion stress ratio are explained with tie
use of anisotropy, complementary normal stress, and the orientation of
the shearing stress with respect to the material texture.

The author is at Brown University.
8 References.

14. Fitzgibbon, D. P.: Experimental Method for Testing Materials in
Bilaxial Stress Fields. Space Technology Laboratories, Los Angeles,
STL / TR-60~0000-09028, February 1960.

An experimental procedure for investigating the biaxial stress
states that arise in pressurized vessels is presented. The main objec~
tive of the report is to set down an experimental proc.:iure with suffi-
cient flexibility to be extended to investigations of any tension-ten-
sion biaxial stress field. This report is a preliminary investigation
and contains only a discussion of the experimental procedure with no
results presented.

A limited description of biaxial stress fields is presented. The
experimental procedure is basically to maintain a constant ratio of
longtudinal to circumferential stress while increasing these stresses
to failure. This is to be carried out for several stress ratios until
sufficient data is obtained. Direct axial loading is accomplished with
a testing machine while pressure loads are applied with the use of a
hydraulic jack. X - Y plotters are used to record longitudinal and
circumferential strains as a function of pressure. A detailed list of
equipment is provided in the appendices along with a block diagram of
the instrumentation.

Data are electronically reduced and corrections are discussed. It
is shown that although the data obtained must be reduced, initial test
records serve as useful comparative results since data corrections are
usually comparatively small.

The author i ~i3nace Technology Laboratories
5 References.

15. Compressive Stability of Orthotropic Cylinders. New York University,
College of Engineering, Roucarch Division, Technical Report SM 62-4,
May 1962.

Elastic and plastic buckling of short isotropic and orthotropic
cylinders loaded in axial compression is considered. The governing dif-
ferential equation is obtained from equilibrium and strain-displacement
conditions. Solutions for the buckling coefficients are obtained
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for both axisymmetric and asymmetric modes. The buckling coefficients
are minimized for the moderate length ranges.

The behavior of the solutions over the length ranges correspond-
ing to flat plates, short cylinders, and moderate length cylinders is
examined for the:.#lastic case. In the moderate length rance, solutions
are presented graphically in parametric form. Additional chavbs off:
buckling coefficient ratio vs. wave length parameter are presented,’
Upper limits for the short cylinder region are determined for both the
axisymmetric and asymmetric modes in terms of a curvature parameter and
the buckling coefficients. The results for the short cylinder region
are presented in graphical form.

For the plastic cnse, solutions are obtained for the axisymmetric
and asymmetric modes. Solutions for wave length parameters and buckling
coefficients are presented graphically and are compared with available
isotropic test data for moderate length aluminum alloy cylinders (3003-0,
2017-Th, and 7075-T6) to establish limits on the ranges of the explicit
solutions presented. A plasticity reduction factor is introduced and
plotted against curvature. For orthotropic plastic cylinders, buckling
coefficient vs. curvature charts are presented. Effects of plasticity
on moderate length orthotropic cylinders are demonstrated. A quantita-
tive illustration is used to calculate the buckling coefficient vs.
curvature charts.,

Post-buckling behavior of orthotropic cylinders is qualitatively
discussed. A schematic representation of the behavior of moderate lensih
cylinders is presented graphically and the special case of the isotroric
cylinder is discussed for both elastic and plastic cylinders. The plas-
tic analysis is based, in parts, on the analysis of Lee. Effects of
initial imperfections are qualitatively discussed.

The author is at New York University.
7 References.

16. Gerard, G.: Elastic and Plastic Stability of Orthotropic Cylinders.
NASA TN D-1510, December 1962, pp. 277-295.

Elastic and plastic buckling behavior is predicted for orthotropic
cylinders of moderate and short length by linearized stability theory.
Plastic buckling behavior is investigated for isotropic cylinders in the
same length ranges. All of the theoretical results are presented graph-
ically and correlated with experimental data. Comments are generally
confined to cylinders loaded in axial compression although mention is
made of the general agreement in buckling behavior of other loading
mechanisms with linearized theory.

In the case of moderate length orthotropic cylinders, results in-
dicate that the failure mode is influenced by the buckling coefficient
ratio and the wave length parameter. For buckling coefficient ratios
greater than one, results indicate that failure is governed by the axisym-
metric mode. For buckling coefficient ratios less than one, or for
imaginary wave length parameters, the asymmetric mode is found to govern.
For short cylinders the buckling mode is determined by the curvature para-
meter. Axisymmetric modes are found to govern only for curvature para-
meters less than l.4.

Axisymmetric modes of failure are found to govern for moderate length
isotropic cylinders in the plastic region. Plasticity reduction factor
equations are presented for axisymmetric and asymmetric modes for short
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isotropic cylinders in the plastic region. The axisymmetric solution
for isotropic cylinders is shown to be applicable to orthotropic
¢ylinders in the plastic region. For the asymmetric modes, it is found
that the proper orthotropic plasticity coefficient must be used.

Correlation with available experimental data is made for ortho-
tropic elastic cylinders. The author concludes that orthotropic con-
struction is more reliable than isotropic since prediction of buckling
loads is more accurate. For failures of plastic cylinders in the axisym-
metric mode, correlation is excellent. However, asymmetric failures ex-
hibited discrepancies with theory.

Post buckling behavior is briefly discussed along with the effect
of imperfections in the cylinder. Discussion reveals that a decided
effect on the buckling characteristics in elastic cylinders but a negli-
gible effect for plastic cylinders,

Author concludes that structural reliability of orthotropic laterally
stiffened cylinders exceeds that of longitudinally stiffened isotropic
cylinders.

The experimental program was conducted with only laterally stiffened
orthotropic 2014-T6 aluminum alloy cylinders. Results from another NASA
sponsored investigation are used for 7075~T6 and 3003-0 aluminum alloys
(NASA Research Grant NSG-17-59 with New York University).

The author is at Allied .coenrceh Associates.
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17. Gibson, J. E.: Computer Analysis of Thin Shells. Symposium on the
Use of Computers in Civil Engineering. Laboratorio Nacional de Engenharia
Civll, Paper No. 24, October 1962.

Programs are described for determining moment and stress resultants
for general multi-shell structures without edge beams that are capable
of solving shells with up to thirty beys.

Two basic-procedures are followed. The first method is derived from
equilibrium and compatability relations where the governing equation is
presented along with the general and particular solutions involving
eight arbitrary constants to be evaluated from the boundary conditions.
The second method is derived from displacement considerations. Three
partial differential equations arise and an assumed solution yields a
characteristic equation where the vanishing determinant of the coeffi-
cients furnishes the needed information for calculation of stress and
moment resultants.

Boundary conditions are found to require that the stress and moment
resultants must vanish at the free edge; that the displacement be con-
tinuous at shell intersections; and that the moment and stress resul-
tants be equal at shell intersections.

Example applications to asymmetrical shells are cited. The first per-
tains to a shell with a total arc anslec of £0°, a radius of 30 feet, a
length of 120 feet, a thickness of C.25 fecet, and a total loading angle of
20°, ‘Data is presented in tabular form. The second pertains to wind
loading on a double cylindrical shell of the same specifications as the
first problem with a wind loading of 15 psf. Results are presented in
graphical form. The third problem pertains to the wind loading of a flat
roof in which small arc angles (2°) are used to approximate a flat surface.
The radius used is 200 feet in this case. The angle of inclination
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of the shells is 30°. The results of the analysis of a shell of double
curvature are presented in tabular form. The shell has the same overall
geometry as that of problems one and two.

The author is at University of llanchester.
6 References.

18. Hodge, P. G., Jr.: Plastic Analysis of Circular Conical Shells.
Department of Mechanics, Illinois Institute of Technology, DOMIIT Report
No. 1-8, August 1959.

Basic equations necessary to urolict the collapse load of a right
conical shell when the load is appliecd over a finite area at the vertex
are reviewed. Shell dimensions and stress resultant and displacement
sign conventions are shown. Equations of equilibrium along a generator
and moment equilibrium equations arc written in dimensionless form.
Generalized strain rates and generalized stresses are then written in
terms of displacements. Boundary conditions are stated and external
and internal energy dissipation rates are presented. The fact that the
external and internal energy dissipation rates must be equal is stated
to provide an upper bound on the load.

When the load is applied over a finite area, two problems are con-
sidered—one involving direct stress and the other involving bending
moments. A solution is presented for the direct stress. A moment dis—
tribution is also proposed but found not to be statically admissable.

A new hypothesis is formed and another moment distribution results that
is statically admissable. Applying the plastic flow law to the assumed
stress profile and using the boundary conditions, a kinematically ad-
missable velocity field is derived. Internal and external energy rates
are then equated to yield the collapse load. The equation presented
for the collapse load is shown to provide upper and lower bounds for the
collapse load for all shells.

For the case of a concentrated load the static problem is approached
directly by letting the area of load application approach zero in the
previously derived equations. The velocity field is approached indi-
rectly since if the area is reduced to zero an inadmissible veloctity
field is created. The equations are shown to apply to shells with other
edge supports.

A more direct approach to the problem of a general rotationally
symmetric shell is presented and is illustrated for the case of a shell
cap. Solutions of shells of medium flatness are presented in the appen-
dix.

The author is at Illinois Institute of Technology
6 References.

19. Hodge, P. and Panarelli, J.: Plastic Analysis of Cylindrical Shells
Under Pressure, Axial Load and Torque. Illinois Institute of Technology,
Department of Mechanics, DOMIIT Report No. 1-17, April 1962.

An explicit parametric form of the yield curve is obtained for thin
shells that yield according to the von Mises yeild criterion. For
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arbitrary shells;, the yield condition is expressed in terms of six gen-
eralized stresses. In the case of the cylindrical shell, the variables
are reduced to four. Generalized stresses are further reduced to two
by restricting the loading mechanism to the case of a cylindrical shell
with axial and twisting loads applied only at the ends.

The case of the cylindrical shell loader only at the ends is treated
with the use of dimensionless stress parameters. The resulting yield
curve is shown to be bounded from the interior by its inscribed circle
and from the exterior by a circle of 5 per cent greater radius than the
inscribed circle. It is concluded that a solutior according to a circle
provides close bounds on the interaction curve. Sirmnlified solutions
for singular portions of the yield surface are discussed briefly. Dis-
cussion is limited since only the bounds of solution are of primary con-
cern. A load parameter is introduced that differs from the original
stress parameters in that it is related to the yield stress of the mate-
rial in simple tension rather than the stress to cause yield in the struc-
ture. Upper and lower bounds in terms of a load parameter are furnished
to describe the yield condition.

Examples are cited for the special case of an applied torque and
pressure with no end load and an ordinary pressure vessel where the pres-
sure acting on the ends of the vessel causes an axial load. Interaction
curves are plotted for these special cases. The dimensionless para-
meters are again related to the yield stress in simple tension of the
material and not to the load that causes yield in the structure.

The Appendix provides an approximate solution for the yield curve,

The authors are at Illinois Institute of Technolopy.
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20. llom, K.: Elastic Stresses in Ring Frames of Imperfectly Circular
Cylindrical Shells Under External Pressure Loading. Structural Mechanics
Laboratory, Research and Development Report No. 1505, May 1962.

A solution for the elastic stresses in the ring frames of imper-
fectly cireular cylindrical shell of finite length subjected to external
pressure presented by Kendrick is reviewed. The Kendrick analysis is
developed with the principle of minimum potential energy (Rayleigh-Ritz
method) assuming an initial imperfsction of thc .= . form as buckling
displacements. The assumption of the initial imperfection parameter
presented by Kendrick is shown to be improbable and a more realistic
form is presented.

Kendrick's general approach is ¢losely followed with modifiecation
only in the imperfection parameter used. The potential energy is
written as a function of the energy stored in the frame and shells and
the total work done by the external locad. Strain relationships are
introduced (derived in the Appendix) as a function of the buckling and
axisymmetric load displacements. The principle of minimum potential
energy is apnllcd Lo obtain a set of linear non-homogeneous equations
in mode shape paranciers as a function of the initial imperfection am-
plitude. liode shape parameters introduced are functions of buckling
displacements. Finally, the elastic strain equation as a function of
the buckling displacements is introduced (derived in Appendix). An ap-
proximate solution is obtained by using the relations from the complete
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solution for the special case of an infinite cylinder subjected to uni-
form external pressure neglecting small-order terms. The approximate
and complete solution compare favorably.

Tests are currently being conducted to confirm the theory pre-
sented. Preliminary results are obtained using cylinders constructed
of high-strength steel with a yield strength in the range of 45,000 to
50,000 psi. Stiffeners were made of T-frames with an overall length
about 1.6 times the cylinder diameter between rigid ends. One small
cylinder was constructed as a comparison cylinder with no initial im-~
perfection. Two other specimens were of welded frame construction with
an initial imperfection. The two test structures had different magni-
tudes of imperfection.

Results thus far gathered experimentally are compared with analyti-
cal findings. It is found that the approximate and complete solutions
presented compared more favorably with experimental results than the
Kendrick analysis. All results are presented graphically.

The author is at David Taylor Model Basin.
16 References.

2l. Keller, H. B. and Reiss, E. L.: Some Recent Results on the Buckling
Mechanism of Spherical Caps. NASA TN D-1510, December 1962, pp. 503-514.

The buckling mechanism of clamped spherical caps is qualitatively
discussed. Initial load parameter, versus maximum defornition curves,
first'prgposed by von Karman and Tsien, are discussed. ‘lic curve
von Karman and Tsien presented indicates that the spherical cap can
exist in a maximum of three equilibrium states. The possibility of more
than three equilibrium states existing simultaneously is discussed. The
buckling mechanism is described by ordering the equilibrium states exist—
ing simultaneously in terms of the potential energy in each state. The
triggering mechanism that causes the dynamic transition from one equilib-
rium state to another is discussed. Only axisymmetric deformation states
are considered but the transition problem is not limited to the axisym-—
metric case.

Bifurcation buckling theory is used to bracket and yield close
bounds for the intermediate buckled state where the energy in this state
is equal to the energy in the lowest buckled state (lowest load parameter).
A qualitative load-deformation curve for bifurcation buckling is presented.

For relaxation buckling the method of liurray and Wright is used.

Only preliminary results are summarized relating to the number of equilib-
rium states and the energy loads. Equilibrium states are discussed for

a large range of geometric parameters. Unbuckled, buckled, and rigger—
ing" states are discussed in the geometric parameter ranges considered.
The largest number of multiple solution thus far determined is nine.

Dependency of the problem on boundary conditions is discussed. Edges
are considered clamped in this report. A procedure is proposed to elimi-
nate the effects of initial imperfections in experimental tests.
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22. Kuenzi, E. W.: Buckling of Layered Orthotropic and Sandwich Cylin-
drical Shells in Axial Compression. NASA TN D-1510, December 1962,
pp. 323-330.

Results of the modification of the von Karman and Tsien large
deflection theory for the calculation of eritical loads as applied to
orthotropic cylinders loaded in axial compression are presented. Re-
sults are also presented for the modification of a theory for determing
the critical loads of sandwich cylindrical shells loaded in axial com-
pression which was previously presented by the author.

Extensive experimental data previously determined for plywood
cylinders constructed of yellow birch and yellow-poplar veneers are
compared graphically with analytical predictions of critical loads.
Only limited comparisons of sandwich core data are presented., The
sandwich sheets were made with aluminum facings and cores of end-grain
balsa wood and cores of soft cork board. Precautions were taken to
assure that the critical load was below the compressive proportional
limit stress.

Correlation between analytical and experimental data is only faip
due to the large amount of scatter in the experimental data.

The author is at United States Forest Products Laboratory.
8 References.

23. Lu, S. Y. and Nash, W. A.: Elastic Instability of Pressurized
Cylindrical Shells Under Compression or Bending. University of Florida,
Technical Report No. 1-for Research Grant NSG-16-59, :

January 1962.

A theoretical analysis of pressurized cylindrical shells in
bending or axial compression is presented using nonlinear finite de-
flection theory. The compatibility and equilibrium equations are ex-
pressed in terms of the Airy stress function for membrane stresses. 4n
approximate form of the deflection pattern is assumed and an expression
for the Airy stress function is proposed. An approximate solution of
the equilibrium and compatibility equations is obtained using Galerkin's
method.

Due to the form of the proposed stress function it is possible to
obtain solutions for the cases of bending and compression separately
using the same approach. Results are presented graphically as critical
stress vs. pressure and compared with the results of Lo and Thielemann
and the experimental data of Fung and Lofblad in the case of axial com—
pression. For eccentric compression, or pure bending, the results are
compared with the experimental results of Suer, Harris, Skene, and
Benjamin for axial compression. A4ll results are presented in non-dimen-
sional form.

The effect of initial imperfections is discussed. It is assumed
that the ratio of the incremental change in critical stress to the criti-
cal stress at zero pressure ratio is practically constant with respect
to imperfections. This ratio is plotted against a non-dimensional pres-
sure allowing test data to be obtained at only one pressure and the
value of critical stress in the same imperfect shell to be calculated
at any other pressure. Test data support the validity of this concept.

The theory presented is in good agreement with test data for a wide
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range of pressures for both axial compression and pure bending. However,
the values of critical stress are conservative for values of dimension~
less pressures greater than O.l.

The authors are at University of Florida.
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24+ Morgan, W. C. and Bizon, P.: Experimental Investigation of Stress
Distributions Near Abrupt Change in Wall Thickness in Thin Walled
Pressurized Cylinders. NASA TN D-1200, June 1962.

An experimental investigation is conducted to determine the valid-
ity of previously published procedures in predicting the stress distri-
butions arising from discontinuities of the middle surface of thin-walled
pressurized cylinders. A modified analysis as applied to both thin and
moderately thick-walled cylinders is presented in the Appendix. The
principle of superposition is applied by adding the stresses obtained
as a result of surface discontinuity directly to the membrane stress.

Experimental data was obtained for large cylinders with diameter to
thickness ratios of 117 and small cylinders with diameters to thickness
ratios of 28. Large cylinders were made of a single shcst of 605610
aluminum alloy rolled to shape and welded on a single longitudinal seam.
Flanges were welded to the structures and the entire structure was heat
treated to the T6 condition. Chemical milling was used on the large
cylinders to produce thickness changes in the walls. Small cylinders
were machined of 2014 - T6 aluminum extruded tubing. Abrupt changes in
wall thickness caused by machining offered closer agreement with analyti-
cal assumptions. Tests were made at internal pressures of 100, 110, 120,
130, 140, and 150 psi for the large cylinders and 200, 300, 400, 500, 600,
and 623 psi for the small cylinders.

All cylinders were constructed with a ratio of wall thickness to
change in wall thickness of 0..4. Data obtained from tests are compared
with analytical results graphically. The maximum variation between ex—
perimental and analytical results occur in large cylinders and is thought
to have resulted from the disparity of the actual structure with analyti-
cal assumptions. A maximum variation of 10 per cent is found for the
large cylinders and 6 per cent for the small cylinders.

It is concluded that stresses arising from the discontinuity of the
middle surface of pressurized cylinders have a marked effect on the stress
field. This effect is most apparent in the case of a continuous outer
surface and disconbtinuous inner surface.

The authors are at Lewis Research Center.
L, References.

25. Mushtari, K. M. and Schenkov, A. V.: Stability of Cylindrical and
Conical Shells of Circular Cross Section, with Simultaneous Action of
Axial Compression and External Normal Pressure. Translation of "Cb
ustoichivosti tsilindricheskikh i konicheskikh obolochek krugovogo
cecheniia pri sovmestnom deistvii osevogo szhatiia vneshnego normalnogo
davleniia." Prihladnaia Mathematika i :‘ekhanika, Vol. 18, No. 6, Novem-
ber-December 1954. NACA Technical :ciuorarda 1433, April 1958.



D 42

A theoretical analysis is given for the determination of the upper
limit of the critical load for circular cylindrical and conical shells.
Loading consists of the simultaneous action of compression uniformly
distributed over a cross section and external normal pressure.

Differential equations of equilibrium are written in terms of a
stress function and a normal displacement. Boundary conditions are
written for the case of simply supported ends. By means of a change of
variable substitution the differential equations and boundary conditions
are rewritten in a form more adaptable for solution. A normal displace-
ment function is assumed reducing the equations to a fourth order equa-
tion in the stress function which is solved. Boundary conditions are
introduced making possible the approximate evaluation of the four arbi-
trary constants.

The characteristic equation is obtained (by the Bubnov-Galerkin
method). The complex characteristic equation is simplified by the
assumption of a thin shell. The square of the normal displacement fre-
quency is assumed much greater than unity resulting in an equation for
the critical load. The critical compressive load is then written for
the case of zero pressure and does not deviate from the exact analysis
of Shaterman by more than 5 per cent (conservative) for thin shells.

An expression for the critical isotropic external pressure is ob-
tained. For the special case of the cylindrical shell, the critical
pressure is obtained with the shell under the simultaneous action of a
specific compressive load. The resulting expression is shown to pro-
vide an upper limit to the critical pressure.

Russian Translation.
6 References.

26. Nachbar, W. and Hoff, N. J.: The Buckling of a Free Edge of an
Axially Compressed Circular Cylindrical Shell. Quarterly of Applied
Mathematics, Vol. XX, No. 3, October 1962, pp. 267-277.

The classical linear equations for axially compressed circular
cylinders are solved for free—edge boundary conditions. An explanation
of why the loaded circular edges of the shell buckles before the other
edges if they are not reinforced is presented.

The classical equations for displacements are used in dimension-
less form and are based on the assumptions of Donnell. These equations
are presented as functions of the diiensionless stress function and
dimensionless displacements. Exprecsions for the total edge resultant
forces acting on the surface cut out by plane normal to the longitudi-
nal axis of the cylinder are presented. Equilibrium conditions of a
deformed edge are obtained by the linear superposition of the resultant
force distribution at the edge before and after deformations take
place. Three scalar equilibrium conditions are thus obtained for the
free edge. In addition, a fourth equation arises from the moment at
the free edge.

Solutions are obtained for the four equilibrium edge conditions
derived with the assumption of a semi-infinite cylinder. For the case
where Foicsonts ratio is 0.3, the critical stress ratio vs. the para-
meter which is indicative of the number of complete buckled waves a-
round the cylinder is plotted. The lateral displacement is also
plotted as a function of the axial coordinate.
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The authors are at Stanford University.
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27. Newman, M. and Reiss, E. L.: Axisymmetric Snap Buckling of Conical
Shells. NASA TN D-1510, December 1962, pp. 451-462.

Discussion of recent results pertaining to cone buckling limited
to axisymmetric deformations is presented. The close relation of coni<
cal and spherical cap problems is discussed. Results are presented
graphically for buckling of simply supported and shallow truncated
cones.,

Relaxation buckling beliovi v 1+ 3lscussed. Differential equations
previously obtained are nieo. L . ‘wulary value problems associated
with simply supported and shall.. ....calbed cones are discussed.

Friedrichs! energy buckling criterion as applied to cones is used to
indicate the existence of an intermediate load where the energy of de-
formation is the same as that for the lowest buckling load. Numerical
data are presented in charts of load vs. a geometrical dimensionless
number and load vs. axial shortening for specific dimensionless geomet-
rical parameters (two sets of geometrical parameters are employed).
Also shown are curves of upper, lower, and intermédiate buckling loads
vs. the geometric parameter employed. )

Bifurcation buckling is also discussed. Upper and lower bounds
for the intermediate buckling load are presented.

The authors are at Republic Aviation Corporation and New York University,
respectively.
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28. North American Aviation, Inc.: Testing of Unstiffened Metal Foil
Cylinders With and Without Internal Pressure. North American Aviation,
Inc., Missile Development Division, Missile Test Laboratory, AL-2679,
September 1957.

An extensive series of tests performed on both pressurized and un-
pressurized thin-gage metal monocoque cylinders loaded in axial com-
pression, bending, torsion, and combined loading is described. Dimen-~
sions of the 171 test cylinders made of 18-8 iH steel and 2S H18 alum-
inum alloy sheet with one 3/8 inch wide axial seam bonded with Epon VI
adhesive cured at 200°F or seamwelded are presented in tabular form.
Cylinder diameters were maintained at 17% inches.

The stest setup is described in detail. A schematic diagram of the
load rig is shown. For developing testing procedures, the first cylin-
ders were made of two-ply laminated fiberglass. Material characteristics
for the fiberglass are included. Construction techniques for fiberglass
cylinders were repeatedly changed but no suitable method was found.

Three other materials were investigated and, unlike the fiberglass, the
main problems encountered were not intrinsic in the material bul were

in the fabrication procedure. The three other materials tested were
18-8 3H steel, 25 H18 aluminum alloy, and Mylar. Suitability of brazing,
bonding, and seam welding were investigated. Brazing is rejected and
bonding was adoped. Bonded seams separated in some cases of high tor-
sion loading. Consequently, seam welding is adopted. A complete
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description of the model tests undertaken to study model characteristics
is included.

A schematic diagram of the loading system for torsion and compres-—
sion of the metal cylinders is included. Two loading conditions were
studied in the tests. 1In one case, axial stress due to internal pres—
sure was present whereas in the other case this stress was balanced by
an axial strut.

Test results are presented in tabular form and are plotted as
average values on a graph. The graphical data are presented in dimen-
sionless form. In addition to failure data, skin buckling stress and
torque deflection data are also presented graphically. The data plotted
have no corrections for length-radius ratio but show consistent results
for the materials and thicknesses tested. For all buckling load values,
the buckling load is defined as the load that caused plastic buckling,

The author is not stated.
1 Reference.

29. Peterson, J. P.: Bending Tests of Ring-Stiffened Circular Cylin- .
ders. NACA TN 3735, July 1956.

A series of bending tests on ring-stiffened circular cylinders
were made of 25 cylinders loaded to failure. Variations in the ratio of
ring spacing to radius and in the radius to thickness ratio were incorp-
orated in the test specimens. Variations in radius to thickness ratio
vere confined to values between 120 and 750. Ring spacing to radius
ratios were £, 3, 1, 2, and 4 for the tests. Cylinders with diameters
of 19, 30, 48, and 77 inches were tested. Rings of the 19 and 30 inch
diameter cylinders were extruded Z-sections with the use of two 1x1x1/8
inch angle sections and a 3 inch sheet of 1/8 inch thickness. Rings in
all cases were heavy in order to reduce the possibility of general in-
stability failures. Specimen details are presented in tabular form.
All specimens were constructed of 7075-T6 aluminum alloy.

Two test rigs were used and photographs of these rigs are pre-
sented. Loads were applied by means of a hydraulic jack. Friction in
the loading was accounted for in one rig but was not established for
the other frame. ,,.;

Tabular data 6f the bepding moment sustained by the specimens at
buckling are presented. BeAding moment sustained at buckling is also
presented in graphical form plotted against parameters obtained from
small-deflection theory. Data indicate that decreasing stiffener
spacing yilelds negligible gain in strength until a value of spacing to
radius ratio of 3 is reached. Mode of failure data is also obtained.

A photograph of a cylinder after failure is included.

It was determined that any size effect that exists must be small
and hidden due to the scatter of data obtained for cylinders of the
same size. No attempt is made to determine the extent of eccentrici-
ties in structures tested.

A graph is presented that was obtained by using small-deflection
theory as a guide and fairing the lower limit of the curves to the ex-
perimental data. It is conjectured that this curve is adequate in pre-
diction of the bending strength of ring-stiffened circular cylinders
where the rings are large enough to prevent general-instability failures.
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The author is at Langley Aeronautical Laboratory.
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30. Reynolds, T. E.: A Graphical Method for Determining the General-
Instability Strength of Stiffened Cylindrical Shells. Navy Depart-
ment, David Taylor Model Basin, Structures and Materials Laboratory,
Research and Development Report 1106, September 1957.

General instability strength of externally pressurized, ring-
stiffened, cylindrical shells is considered. Solutions of Kendrick
(Part I, Part II, and Part III) are discussed. A short-cut method of
approximating Kendrick's third solubion from llendrick's second solu-
tion is presented. Shell radius, thickness, compartment length, frame
spacing, and frame size are considered as significant parameters.
Length to radius ratios of from approximately 2 to 10 are considered
and a wide range of the shell pressure parameters are considered.

Calculated results are comared with those of Kendrick's thira
solution in tabular form. In all but a few scattered points, results
compare to within 10 per cent of Kendrick's theory. Calculations
for externally framed steel cylinders are presented graphically. The
appendix illustrates the use of the design curves by a numerical ex-
ample. Also included in the appendix is an approximate formula for
the calculation of the cylinder frame strength parameter.

The author is at David Taylor Model Basin. Washington, D. C.
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31. Ross, R. D.: An Electrical Computer for the Solution of Shear-lag
and Bolted-Joint Problems. NACA TN 1281, May 1947.

The analog between the distribution of forces in flat stiffened
panels and bolted joints and the current in a ladder type resistor net-
work is used to obtain analogue solutions for the stresses in shear lag,
box beam, and bolted joint problems.

A pilot model of a more elaborate analogue system is described.
Twenty-seven 1000 ohm adjustable resistors with a sensitivity of * 1 per
cent or ¥ 2 ohms (whichever is least) are used. A wiring diagram and
photographs of the network are included. Current is supplied by elec-
tronic regulating circuits. Current regulator diagrams are also shown.
Currents are measured with a milliameter having a sensitivity of about
£ per cent of full scale. Errors inherent in the analogue are dis-
cussed.

The analogy between the physical and analogue variables is pre-
sented in tabular form for the case of shear-lag. Boundary conditions
for the physical and analogue cases are discussed. An example problem
is chosen to compare the solution of the analogue with the exact solu-
tion of Kuhn. The procedure for determining the appropriate resis-
tances in the analogue network is discussed and examples are included.
The effect of the selection of bay lengths is discussed and examples for
different bay lengths are compared with the exact solution graphically.
The length of the bays is shown to have a pronounced effect on the maxi-
mum stress. A box beam loaded in bending is treated similarly. The
cover panel of the beam is the same as the plate of the previous example.
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Results are plotted graphically and are compared with the exact analysis.
Both shearing and normal stresses are shown.

The analogy (for the bolted-joint problem) between the physical and
analogue variables is also presented in tabular form. Plate constants are
calculated and the appropriate resistances are determined. Results are
tabulated and shown to compare favorably with an analytical method.

The author is at Langley Aeronautical Laboratory.
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32. Seide, P.: A Donnell-Type Theory for Asymmetrical Bentings and
Buckling of Thin Conical Shells. Guided Missiles Research Division. The
Ramo-Wooldridge Corp., Report No. GM-Ti-103, Contract o. A (600)-1190,
July 1956.

Asymmetric bending and buckling of circular cones is treated by re-

- taining certain terms omitted in the analysis by Hoff. A figure indi-

cating the notation used is presented.

In the case of bending, expressions for the strains and curvatures
of the middle surface presented by Love are uscd wibth the modification
in the curvatures of deleting the terms irwdlving the circumferential
displacement to define the stress and moment resuliants. Bquations of
equilibrium and the boundary conditions are established by the principle
of minimum potential energy. The change in potential energy due to
virtual displacements is written and minimized yielding the stress and
moment resultant equations in the axial, circumferential, and radial
directions. The equations of equilibrium are shown to be identical to
those for plane stress or strain in polar coordinates if a simple trans-
formation is made relating the transformed polar angle to the actual po-
lar angle and the cone semi-vertex angle. Stress and moment resultants
are written in terms of a stress function and the transformed polar
system. A single fourth order equation is eventually obtained in the
stress function and the normal shell deflection. Expressions for the
tangential and longitudinal deformations are presented.

The procedure for buckling is much the same as that for bending ex~
cept for the fact that the energy expression is modified by adding the
energy stored in the plate during buckling by the middle surface stress
and moment resultants to that rresent prior to buckling. Non-linear
strain expressions proposed by Langhaar are used. By methods similar to
those for bending, a single eighth order equation is obtained for buck-
ling in the variable of normal skin deformation that reduces to a fourth
order equation in the special case of a concentrated load where the
force resultants are given by the membrane stress solution.

In both cases (bending and buckling) the equations reduce to the
Donnell equations for cylinders, the circular flat plate equations, and
the axisymmetric cone equations when the appropriate cone parameter is
varied. The equations are, in both cases, fourth order partial dif-
ferential equations with variable coefficients that are not solvable
except in special cases. It is stated that numerical solutions are apt
to be useless due to the poor convergence of the series solution.

The author is at Ramo-Wooldridge Corporation, Guided Missile Research
Division.
9 References.
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33. Seide, P.: A Survey of Buckling Theory and Experiment for Circular
Conical Shells of Constant Thickness. Aerospace Corp. El Segundo Calif.,
Report No. TDR-169 (3560-30) TN 1, November 1962.

Buckling theory for circular conical shells is reviewed. Small
deflection theory forms the basis for the major part of the review al-
though large deformation results are mentioned. Axisymmetric buckling
as well as asymmetric cases are considered. Axial compression, combi-
nations of axial compression and internal pressure, external hydrostatic
pressure, combined axial load and external pressure, and torsion are
considered and critical loads are given where results are available.
Edge conditions considered are both simply supported and clamped. Ref-
erences for large deformation results are given.

Available experimental data are compared with theoretical results
for the loading conditions mentioned above. In addition, experimental
results are given for the case of pure bending, bending and internal
pressure, and bending, axial compression and internal pressure for which
there are no theoretical results available. All results are presented
graphically. In the case of combined loading, interaction curves are
presented.

Recommendations for future research are made and gaps in the current
knowledge (theoretical and experimental) are indicated.

The author is at Aerospace Corporation
61 References.

34+ Singer, J.: The Effect of Axial Constraint on the Instability of
Thin Circular Cylindrical Shells Under External Pressure. Technion
Research and Development Foundation, Israel Institute of Technology,
Department of Aeronautical Engineering, Technical Note iio. 1, Contract
No. AF 61(052)-123, September 1959.

The effect of axial restraint on the instability of a cylindrical
shell under hydrostatic pressure or uniform lateral pressure is analysed
by the Rayleigh-Ritz method. Restraints are considered active from
initial loading or active at the start of buckling. Restraints are
applied at cylinder ends.

Axial and hoop stresses are derived for the two cases of end re-
straints., Expressions for stresses and displacements are substituted
into the equation for total potential energy and the usual stability
determinant is formed by minimizing this expression. The critical
pressure thus obtained reduces to the expression obtained by Von Mises
in the absence of axial restraints. The expression derived is for the
case of axial restraint applied at the beginning of loading.

Instability of a cylindrical shell under uniform external lateral
pressure is analysed in the same manner. An equation is presented
for the critical stress which differs from the usual membrane stress by
a factor a . An expression for o« is presented for both the hydrostatic
and uniform external lateral pressure cases. In the lateral pressure
case the equation for o is equivalent to ¢h:i derived by Batdorf.

The author is at Israel Institute of Technology.
9 References.
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35. Omirnov, A. F.: Some Hew lethods for Solving Structural Problems
by lieans of Computers. Symposium on the Use of Computers in Civil
Engineering. Laboratorio Nacional de Engenharia Civll, Paper iio. 71,
October 1962,

A new computational method for solving complex problems in struc-
tural mechanics is presented. The analysis is based on the notion that
the highest order derivative in a differential equation may be repre-
sented by Lagrange polynomials. Hence, the vector of the highest de-
rivative is represented by the polynomial of column and integral ma-
trices.

Initial connecting parameters, renresented by matrix equations,
constitute the boundary value problem. A relationship between the
lower and higher order derivatives is furnished employing the matrix
of connection parameters. Forces and moments are then determined by
means of a linear transformation.

In this paper the major difficulty consists of determining the
composition of the integral matrix referred to above. Althourh this
method is particularly suited for high speed digital computers, the
problem is not out of range for the desk calculator in some cases. Ap-
plicability of the approach is extended to both ordinary and partial
differential equations.

The author is of US3R Academy of Construction and Architecture.
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36. Suer, H. S., Harris, L. A. and Shene, W. T.: The Bending Stability
of Thin-Walled Unstiffened Circular Cylinders Including the £ffects

of Internal Pressure. North American Aviation, Inc., AL 2733, December
1957,

A statistical, semi-empirical analysis of the buckling strengih
of unpressurized and pressurized cylinders under axial compression
previously presented by the authors is extended to the bending of un-
pressurized and pressurized cylindrical shells. In the analysis, a
semi-empirical approach is used to account for the effect of initial
imperfections. For unpressurized cylinders, theoretical parameters
from the classical form of the buckling equation for long cylinders
are used.

Ten tests were performed on unpressurized cylinders and 48 tests
were performed on pressurized cylinders. Cylinders were fabricated
from 0.0032 inch and 0.0087 inch thick, half-hard, 18-8 stainless steel
foil. Overall cylinder lengths were 21.5 inches and cylinder radii
were 8.75 inches. Radius to thickness ratios were approximately 1000
and 2730. Most of the cylinders were fabricated by wrapping the sheet
and using Epon IV to bond 3/8 inch longitudinal seam. Other cylinders
were fabricated by seam welding.

.Two_series of tests were performed. In one series, the longi-
tudinal component of internal pressure was balanced by an applied axial
compressive load. In the other series, the longitudinal component of
internal pressure was not balanced. An internal pressure variation
range of O to 24:psi, was used. A schematic drawing of the test jig
is presented. Cylinders were positioned so that the longtudinal seam
fell on the neutral axis and no appreciable difference in performance
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of cylinders of the two types of construction was noted. Internal Dres-
sure was pneumatically supplied. Bending and axial compressive loads
were supplied by hydraulic struts and measured with SR-4 load cells.
Buckling loads were visually determined by observing ripples in the cyl-
inder surface.

Experimental results are presented in both tabular and graphical
form and are compared with results of applicable previous investigations.
Photographs of typical buckle patterns for both pressurized and unpres-
surized cylinders are presented. Experimental values of bending buck-
ling coefficient are plotted against :radius to thickness ratio and both
a 90 per cent and a 99 per cent probability curve is statistically de-
fined to obtain design data. Due to sparsity of data for radius to
thickness ratios greater than 1500 additiondl testing is recommended to
verify the shape of the design curve. £4lso the lower bound design curve
(99 per cent probability) is suggested for pretensioned cylinders.

The authors are at North American Aviation, Inc.
1, References.

37. Tennyson, R. C.: An Experimental Investigation of the Behavior of
Stiffened Plates in Axial Compression. Institute of Aerophysics,
UTIA Technical Note No. 57, September 1961.

Two experimental test programs are undertaken to study the effects
of curvature on. panels with unstable stringers and compare them with
existing data and to establish the trend of the variation of ultimate
strength ratio with the stringer-to-plate stiffness ratio while keeping
the stringer~to-plate area ratio constant.

The first test program consists of tests of eight panels made of
245-T3 aluminum sheet with a thickness of 0.040 inches. Stringers, of
the same sheet material with a thickness of 0.075 inches were rolled
channel sections attached by means of bonding (HYSOL mixture) and round
head machine screws. The panels had overall dimensions of 16 inches x
18 inches. The stringers were 1.9, inches x 0.707 inches (0.707 inches
being the flange dimension). The 16 inch width of the panel was cast in
Wood's metal. Each specimen had two stiffeners and three bays.

The second test program uses five flat and five curved (radius of
curvature of 32 inches) panels. The same basic construction was used as -
in the first test program except that the stringers were made of HOMALITE
photoelastic plastic with a thickness of D.1875 inches. The pauncl euds
were not cast in Wood's metal. ;

. In addition to the two test programs, an auxillary program is under-
taken to determine the stress—strain relations of the stringers and plates.
Short (4 inch) pack specimens that consisted of four channel columns were
tested for each stringer matefial. Plate material was tested in tension.

Linear theory and Wenzek's equation are used as a theoretical guide
for initial panel buckling. Also the theory of Seide-Stein is used. BEx-
neridviental results show good agreement with both theoretical guides.

Lo deberrine effective widths, the stress distribution of Sechler
At Junn io noouneds  This s confirmed by integrating acrocu bhe nanel
and couparing the computed load with the actual load. The cxperimortally
derived effective widths are compared graphically with analytical results




of Sechler and Dunn, and Wenzek. It is found that the analytical results
are rather conservative.

Ultimate strengths of the panel are compared with analytical results
of Sechler and Dunn graphically and it is determined that the analytical
results are conservative by a factor of 3 per cent.

The second program allows color photographs to be taken of the
stringers which indicated that the stringer failure wo: by Suler-tyne
bending.

The author is at University of Toronto.
9 References.

38. Terry, E. L. and icClarcn, J. We.: Blaxial Stress and Strain Data on
High Strength Alloys for Jcoirn of Pressurized Zoponents. Chance Vought

Corp., Technical Documentary Report No. AS)-40. 52401, July 1962.
Authors Abstract

A cross shaped specimen is developed for generating complete biaxial
stress—strain curves under 1:1 and 2:1 biaxial tension stress ratio load-
ing. Tests on several materials have shown that the specimen has good
reliability.

The influence of strength level on the behavior of the 5CrlioV steel
under biaxial loading is investigated. These tests show that by lowering
the uniaxial strength level from 280 to 260 ksi, the shattering type fail-
ure observed at the 280 ksi level ceased to exist. However, the biaxial
failure strains did not increase as the length level was decreased.

Pressure vessel tests which are conducted show that the shattering
type behavior obtained from the biaxial specimens is indicative of poor
resistance to crack-like flaws. Good correlation was obtained between
the failure stresses from the pressure vessels and the biaxial specimens.

Notch toughness tests are conducted to obtain a correlation be-
tween these tests and the biaxial specimen tests. No correlation could
be shown between the notch toughness values and the biaxial failure
strains. However, the notch toughness tests corroborated the conclusion
that the shattering type failure in the biaxial test is indicative of voor
resistance to crack-like flaws in the material.

The biaxial stress and strain data are presented in a form which can
be used directly in the design of biaxially loaded components. In addi-
tion, the test materials are ranked according to the efficiency para-
meters "biaxial ductility ratinr," "resistance to crack-like flaws" and
"biaxial strength / weigh% .®

The authors are at Chance Vought Corporation.

12 References.

39. van der Neut, Arie: General Instability of Orthogonally Stiffened
Cylindrical Shells. NASA TN D-1510, December 1962, pp. 309-321.

Recent work at the National Aeronautics Research Institute
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(Amsterdam) is reviewed. This work involves two structural schemes--the
orthotropic shell and the shell with continuously distributed stringers
and discrete rings. Only the case where the buckling wave length is of
the order of twice the distance between rings is considered in the latter
scheme. liore recent developments are discussed that account for pressure,
the correct stiffness matrix for the skin panels in post-buckling, and for
stringer bending due to hoop stresses. No numerical evaluation of the
stability equation with the use of the stiffness matrix is being performed.

The applicability of linearized theory in prediction of buckling
loads is discussed. Conclusions are drawn that, due to the coexistance
of symmetric and several asymetric modes, non-linearities must be intro-
duced to produce better correlation between experiment and theory. Im-~
perfections in the structure that cause eccentricities in section prop-
erties are discussed. Imperfections are confined to the class where a
difference in the local radius of the cylinder and the average cylinder
radius is on the order of the panel thickness. Ring imperfections can
usually be kept small in comparison to ring height and it is assumed that
the linear theory is adequate in the prediction of buckling loads in struc-
tures with small ring imperfections. Pressurization is found to restore,
to some extent, the imperfections in secions and bring about closer agres-
ment with linear theory. '

Earlier work on orthotropic shells evolved five significant struc-
tural parameters and two mode parameters. Expressions involving the seven
parameters were simplified in the earlier work for five classes of buck-
ling modes classified by the ratio of longitudinal and circumferential
wave lengths. Two cases referred to short longitudinal waves and small
numbers of circumfersntial waves and two referred to long longitudinal
waves. In the lolior, no explicit formula for eritical load could be ob-
tained but a rapidly convergent numerical solution was possible. Earlier
work also considered the use of external or internal stiffening. The
former is considered more efficient.

Earlier work on shells with discrete rings involved the inter-
action of six structural parameters and two mode parameters that govern
the ring displacements. Only short wave lengths are considered due to
the discrete rings. Comparison of calculated buckling loads predicted
by orthotropic shell theory and discrete ring theory indicates little
difference in these predicted loads. This is shown graphically as a
plot of the load parameter versus the number of rings per half wave
length.

Recent work reviewed includes the post-buckling behavior of skin
panels, load pressure difference, and hoop stresses that induce stringer
bending.

Post-buckling behavior is discussed. The stiffness matrix is
presented and modifications of the prebuckling matrix to obtain the
post-buckling matrix are discussed. The use of flat panel data in curved
panel calculations is discussed and it is conjectured that flat panel
data is applicable in general instability curved panel analysis if al-
lowances are made for initial curvature.

Reduction of lateral panel stiffnesses due to hoop stresses not
balanced by pressure difference is discussed. Differences in stringer
and ring deflection due to stringer bending is considered and i% is pro-
posed that future research include a method by which spring stiffness
in a mechanical model of a structure, where rings and stringers are
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connected with springs, can be determined as a function of wave length
to ring pitch ratio.

The author is at Technological University. Delft (Netherlands).
5 References.
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APPENDIX E

OF AN ORTHTROPIC CIRCULAR CYLINDER SUBJECTED TO AN
AXTAL LOAD, END MOMENT AND

UNIFORM RADIAL PRESSURE

Prepared by
William S. Viall

Carl C. Steyer

The work reported in this appendix was supported Jointly by NASA
Contract NAS 8-5168 and NASA research grant NsG-381 and was also
published by the University of Alabama Research Institute as Re-

search Report No. 11.



]
i
v

Vi

Vil

vili

Xl

TABLE OF CONTENTS

Page

TABLE OF CONTENTS, . .oitttiiiiiiiiiiiiiiicnienennees i
LISTOFFIGURES . ... .iiiiiiiiiiiireensecsenneceanaannne ii
SCOPE . .iiiiiiiierennnnnns cesesessessscsensanensears 1
INTRODUCTION, L .. iiiiiieiiiieeirieneeetecanecsaacnns 1
ASSUMPTIONS., .. i iiiiiieeeetinnnnenenceancaasasosnaas 4
CYLINDRICAL SHELL GEOMETRY AND STRESS-STRAIN

RELATIONS L it iiiiiiieierasenesseencannacasnncnns 6

CYLINDRICAL SHELL LOADING AND STRESS RESULTANTS, .. 8

STRAIN ENERGY, POTENTIAL ENERGY, TOTAL CHANGE
IN ENERGY, AND VARIATION IN TOTAL CHANGE IN

ENERGY EXPRESSIONS. ... i iiiiiiiiiiiiiierenecnananns 9
EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY
CONDITIONS. ... iiiiiiiiiiiiiiienionnenoccssssesnnans 13
DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL
EQUATION FORTHE STATIC CASE. .. ..vvviiieienneennnns 15
DETERMINATION OF THE CRITICAL RESULTANT END
MOMENT BY USE OF THE RITZ METHOD, . ...............e. 21
CONCLUSIONS .. i iiitiiiinienencenessocsesatsosenanes 26
RECOMMENDATIONS .. . iiiiiiiiieiieennncnnnnecnannns 26
APPENDIX A: SYMBOLTABLE ... ....ccvvevvireennnannnns 28
APPENDIX B: REFERENCES........cvveeeveeeeceecscananns 32
APPENDIX C: COMPUTER PROGRAM ... . ciivrennnnencans 34
APPENDIX D: COMPUTER PROGRAM TYPE-OUT............ 36
APPENDIX E: COMPUTER PROGRAM OUTPUT FORMAT...... 4i
APPENDIX F: PARTIAL LIST OF DEFINITIONS OF COMPUTER
PROGRAM SYMBOLS. .. ..vvvviieiiencnennns 43
E-i



—

LIST OF FIGURES

FIGURE

1. Coordinate System and Displacements of the
Circular Cylindrical Shell

2. Loading of the Circular Cylindrical Shell

E -ii

PAGE



E-1
THEORETICAL ANALYSIS OF THE STATIC GENERAL INSTABILITY
OF AN ORTHOTROPIC CIRCULAR CYLINDER
SUBJECTED TO AN AXIAL LOAD, END MOMENT, AND UNIFORM RADIAL PRESSURE
by
. +
William S. Viall
Carl C. Steyer++

I. SCOPE

This analysis obtains numerical results using a digital computer program for the

general instability eigenvalue problem that is presented for the dependent buckling load
condition at any combination of the independent loading and geometry. It is not intended

that this analysis be experimentally verified as a part of this investigation.

. INTRODUCTION

Missile tank design is subjected to two design criteria; the material strength for all
possible maximum load conditions, and the structural stability at these possible maximum
load conditions as well as intermediate loads. The analysis of this report is limited to the
stability criteria of missile design.

A missile tank is loaded with different combinations of axial load, end moment,
and radial pressure. The axial load, either compressive or tensile, is a constant force per
unit cross-sectional area and is colinear with the generating element of the tank. The end
moment is a varying force per unit cross-sectional area and is colinear with the generating
element of the tank. This force varies linearly with the distance between a diameter that is
nomal to the plane of the moment, and the element of cross-sectional area. The radial
pressure is internal or external, depending upon the sign given to the pressure difference.

The positive directions of axial load, end moment, and radial pressure are as shown
in Figure 2 and are chosen to induce tension on the element of the tank at the origin of the

axes, Figure 1.

+ Research Assistant, University of Alabama Research Institute
++ Professor of Engineering Mechanics, University of Alabama, Huntsville, Alabama
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Functions performed by missile tanks require that they be stiffened axially and cir-
cumferentially with internal baffles, internal and external stiffeners, bulkheads, etc.

These baffles and stiffeners are integral parts of the missile tank and it becomes possible to
analyze the tank as an orthotropic circular cylindrical shell. The orthotropic circular
cylindrical shell is called circular shell or shell in the remainder of this report.

The loads applied to the shell are not functions of time, therefore, the investigation
is limited to the static case, and the dynamic case is neglected.

The technique used in this investigation of the cylindrical shell parallels the work
of Bodner (1)*, in that the general instability differential equation of equilibrium developed
is a Donnell type differential equation and is obtained by the application of variational
methods to the expression for total change in energy during buckling.

Results can be obtained from the Donnell Type differential equation by any one of
several different methods: Ritz Method, Fourier Series Method, Galerkin Method, Method
of Frobenius, etc.; all of which will yield a satisfactory solution. The Ritz Method is used
in this investigation. The results obtained by the Ritz Method are as accurate as the assumed
deflection expression and the solution becomes an exact solution when the deflection expression
takes the form of an infinite Fourier series. The Ritz Method is mathematically the simplest
of the methods mentioned above and it is readily programmed for digital computer applica-
tions.

The points of stability for the total change in energy expression of a conservative
system are defined by the law of minimum potential energy when the variational principal
is applied to the total change in energy. The first variation of the total change in energy
is equated to zero, thercby obtaining the intrinsic boundary conditions and the equilibrium
equations of the system. The Donnell Type differential equation is obtained by applying a
differential operator to the equilibrium equations of the system. An assumed deflection
expression is substituted into the Donnell equation and the resulting residual force equation
is minimized for each of the unknown constants of the deflection expression. This minimi-~
zation yields a system of homogeneous simultaneous equations, and the stability determinant

of these equations is solved for the independent variable.

*Indicates reference number - see Appendix B.
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The law of minimum potential energy requires that the second variation of the total
change in energy expression of the system be positive for the points of stable equilibrium
and negative for points of unstable equilibrium. The second variation is not performed due
to the anticipated difficulty of the mathematics, and the minimum positive value of the
independent variable is assumed as the point of stable equilibrium.

Experimental evidence obtained by Harris, Suer, Skene and Benjamin (2) indicates
that isotropic circular shell test specimens subjected to axial load with and without radial
pressure fail somewhere between the stable and unstable equilibrium points and that the
failure point is primarily dependent upon the quality of the specimen. The almost perfect
specimens fail at the point approaching the point of unstable equilibrium. As the imper-
fections of the specimens become larger or more numerous the specimen fails at a point
closer to the point of stable equilibrium. Theories developed for unpressurized cylinders
with axial loads by von Kdmdn and Tsien (3), Leggett and Jones (4), and Tsien (5) using
the large deflection theory have attempted to explain the deviation between theoretical
and experimental results. These theories are still considered as inadequate since their re-
sults cannot be readily adapted as design criteria. A similar approach was used for pres-
surized cylinders with axial loads by Donnell and Wan (6) with more success, but a deviation
still exists.

Small deflection theory of shell analysis states that all temms greater than second
degree in the total change in energy expression may be neglected. The small deflection
theory is used in this investigution and allows the development of the Donnell Type linear
differential equation which can be readily solved for a certain particular type of loading.
That the small deflection theory is applicable to certain shell configurations is questioned
by some investigators as indicated above. The answer to this question is left for further
analytical work associated with the experimental evaluation of this investigation.

The classical small deflection theory for isotropic shell stability is limited to the
range R/h-values** less than 200. Some missile tanks have R/h-values of 1000 and there
have been indications that this value may reach 2000. This indicates that the R/h-values

for orthotropic shells that represent stiffened shells should be modified, or the valid range

=
See Appendix A for list of symbols and definitions.
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of the theory extended for orthotropic shells. Arguments for a modification of R/h~values
using a modified h-value, which we will call (heq), are based on the dependence of the
stability criterion on the bending rigidity of the shell. Similar arguments are used for the
extensional stiffness. Suggested values for (heq) are:
hyg = (12 |eq)'/3

where qu is the composite moment of inertia of the shell plus stiffeners;

ho= s+ 1)

where Ixx and 'ss are the equivalent composite moments of inertia in the axial and circum-
ferential directions, respectively; or heq = f(r), where r is the radius of gyration of a
unit element of the orthotropic shell. It is believed that if the shell is analyzed with
R/I'\eq = 200 the small deflection theory will be applicable.

Investigation is being conducted (7) which may allow the proper selection of an
R/h-value for orthotropic shells with an heq-value. Again the question of an R/heq -value
for orthotropic shells is left for experimental evaluation and/or results of investigations in
progress.

For short cylinders (Rz L) the assumed deflection expression, Equation 26, reduces
to the Euler column expression when the cylinder is simply supported, if the circumferential
deflection terms become constant. For long cylinders (R = L/3) the buckling becomes
independent of the boundary conditions. In these ranges this analysis is valid for values
of  wR/L, but the intermediate range (L < R < L/3) the results should again be experimentally

verified.

ll. ASSUMPTIONS

The following assumptions are made in this analysis of circular shells.

1. The shell is composed of linearly elastic material.

2. The stiffeners and baffles are integral parts of the shell, thus creating an ortho-
tropic shell, and the unstiffened and unbaffled shell reduces to the isotropic case.
3. The sheil stresses in the unbuckled but stressed state are determined by elemen-

tary beam theory.
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4. The strain equations, Equation 1, are similar to those used by Bodner (1) except
for certain second degree terms. The second degree terms are included in this analysis
since their effect although unknown, is considered significant. The last term on the right
hand side of the e equation, Equation 1, includes a non-dimensional constant k. With
values of k equal to one and zero, the effect of this term on the final results can be
determined.

5. The work in the circumferential direction is neglected in the determination of

the total change in energy expression. This is based on the symmetry of both of the ¢ .

stresses and the cylindrical shell geometry.

6. The pre-buckling deformation discussed by Donnell and Wan (6) and Stein (8) are

neglected. The effect of these deformations should be investigated during experimental
verification.

7. In the development of the Donnell equation, all terms above the second order
in the tofal energy expression are discarded. Neglecting the terms above second order
simplifies the mathematics and insures a small deflection theory approach to the analysis.

8. Localized or panel instability is neglected in this analysis and only the general
instability of the shell is investigated.

9. The assumed deflection expression, Equation 26, contains only 6 circumferen-
tial terms, but can be extended to any number desired. The use of six terms requires that
a cubic equation be solved and this solution can easily be programmed. Additional terms
in the deflection expression would complicate the computer program and possibly produce
a computer overload. The axial temm in the deflection expression contair- a nondimen-

sional constant m which is used to obtain any number of buckling modes.
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IV. CYLINDRICAL SHELL GEOMETRY AND STRESS-STRAIN RELATIONS

L
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Fig. 1: Coordinate System and Displacements of the Circular Cylindrical Shell.

The coordinate system and corresponding middle-surface displacements for the
circular cylindrical shell are shown in Figure 1.
The expressions used for the buckling strains in the shell wall; written in terms of
the shell middle-surface displacements, u, v, and w; are the same as those given in Reference

(1) with some additional terms, and are written as follows:

_ 2 ’
e =Yr * (1/2) w r T EWe

e, =vi = W/R) + (/2w /R - 2w, + kw/R%) (1)

SS

€ =(1/2)[u,s tv, tw, (w, +v/R)] - zlw, . +v, /2R)

where © o’ s’ and e , are the axial, circumferential, and shear strains, respectively, |
that occur during the bﬁ::kling process; R is the radius of the cylinder; and k is a nondimens-

ional constant. When the subscript or subscripts associated with the middle-surface

displacements are preceeded by a comma, they denote differentiation with respect to the

indicated succeeding coordinate variables.

The stress-strain relationships for a homogenous orthotropic material in generalized
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plane stress, as given by Reference (1), can be written as follows:

o, =E (e + p, e )0 -p p)

XX SX S sx "'xs
% Es‘ (ess + Hys exx) /(- Msx “xs) 2)
o =Ge

XS XS

where O s T and o r are the axial, circumferential, and shear stresses, respectively;
Ex and Es are the moduli of elasticity averaged over the sheil thickness in the axial and
circumferential directions, respectively; G is the average shear modulus; and Hos and Moy
are Poisson's ratios from the x tothe s and s to the x directions, respectively.

For convenience in later calculations certain constants, similar to those given in

Reference (1), are introduced and are written as follows:

ul = Exh /2(] - szpsx)

Eh/2(1 - p p )

XSs' SX

%2
o Gh/8 3)

_.U
!

3
Exh /24(1 ~ szpsx)

_ 3
D2 Esh /24(1 - pxspsx)

D Gh3/96

3

where h is the shell thickness; the a's correspond to the extensional stiffness of the shell;

and the D's correspond to the bending rigidity of the shell.
The following relationship between the elastic constants, based on Maxwell's
reciprocal theorem, is noted for later use.

Ep <E (4)

X ' S§X
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V. CYLINDRICAL SHELL LOADING AND STRESS RESULTANTS
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Fig. 2: Loading of the Circular Cylindrical Shell

The positive shell loads Py Po’ and Mo are shown with respect to the coordinate
system; where Po is the uniform radial pressure, Po is the resultant axial load, and Mo
is the resultant end moment. The positive loads are directed in order that positive stresses
(tensil) are induced at the origin of the coordinate system.

The following stress resultants are defined:

h/2 h/2 h/2

N = ‘/-'h/2 oxxdz N = ‘[h/Z assdz N = [-h/2 oxsdz

XX SS X$

where Wxx' _I\T;s , and N—xs are the axial, circumferential, and shear stress resultants in
the shell wall, respectively, prior to buckling; and ;xx , ;ss' and ?st are the axial,
circumferential, and shear stresses in the shell wall, respectively, prior to buckling. In
general the barred symbols indicate stresses, strains, and stress resultants in the shell prior
to buckling, while un-barred symbols indicate stresses and strains that occur in the shell

during the buckling process.

According to elementary beam and shell theory, the shell loading will induce the

following stresses in the shell wall.

(5)
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;xx = (1/h) [Mocos(s/R) + (R/2) (Pa + po)]

ag
13

(1/h) p R (6)

o = 0
XS

where M =M /1rR2 and P =P /x R2.
a o a o

Substituting Equation (6) into Equation (5) and integrating over the shell thickness

the stress resultants become:

SS (o] (7)
N‘xx =M cos (s/R) + (R/z)(po + Pa)

VI. STRAIN ENERGY, POTENTIAL ENERGY, TOTAL CHANGE IN ENERGY, AND
VARIATION IN TOTAL CHANGE IN ENERGY EXPRESSIONS.

The instability differential equations of equilibrium will be derived using a procedure
similar to that given in Reference (1). The criterion of buckling for an elastic system is
that the potential energy of the system is a minimum. Stated mathematically, the variation

of the change in energy of the system due to buckling, with respect to the displacements,

must be zero; or:

§U +V)=0 (8)

where U is the change in strain energy of the shell during buckling, V is the change in
potential energy of the applied loads during buckling, and & indicates a variation of the
sum with respect to displacements.

The change in the strain energy of the shell is given by the following expression:

U =fv [(o + 0 e + Exsexs) +(l/2)(crxxexx +0 + 0 )1 dV 9)
s

e e (=]
XX XX SS SS $S SS XS$ Xs S

where O 7 s’ and ¢ ; are the membrane stresses in the shell wall in the stressed but
X

unbuckled state and they are assumed to be constant during buckling; Ot s and o ¢ ore
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the superimposed buckling stresses; €’ St and e are the buckling strains; and Vs is
the volume of the shell wall.
The change in potential energy of the shell during buckling has components in the
z and x directions and the total change in potential energy during buckling is given
by the following expression: |
V = -&s P, (-wW)dA -fAe Bxxu dA_ = fAspowdAs -j‘Ash Bxxu,dis (10)
where AS and Ae are the surface and cross sectional areas of the shell, respectively; and
u is given by the expression u = j:; U dx.
The total change in energy, strcin energy plus potential energy, during buckling
is obtained by adding Equation (9) to Equation (10); substituting Equations (1), (2), (4), (5),
(6), and (7) into Equations (9) and (10); and integrating over the shell thickness. The

expression for total change in energy is given by the following expression:

U +V =y {p_ v, R+(ws R/2) +w, v+ (/2R) + (> R/4)]
S
+ Po [w2,xR/4] +Mccos (s/R) [w,2x/2]} dAs
Sy UER20-p p VI, )+ [Eh/20-p pu )10, + 6 /RD)
S
- (2V,SW/R) + szulxvls - (PXSU’XW/R)]

2 2 2 2 2

2 2
+ [Gh/8][v 'y +u ' +w,xw,s +(w,xv /R°) +2v,xu,s +2v,xw,xw,

(1)
2
+ (2v,xw,xv/R) +2u,sw,xw,s +(2u,sw,xv/R) +(2w,x w,sv/R) 1} dAs
+ L (103 /240-p w ) 1Iw?  +u w, w, +(kp w, w/RD)]
A )/ HsxHxs rux o Mex™ rxx® 7ss Mo 1 xx
3 2 2 2 4
+[h 5/24(|-psxpxs)][w,ss+(2w,sskw/R Y+ (k w2/R )

2
* Pas™ 7 sx™ 5 qlh('"jxskw'xxw/R )]

2 / /7 1
+[G|'\3/‘3’6][4w,x$2 +(v'x /R2) +(4w,xsv,)/R)];(:IAs
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Substituting Equation (3) into Equation (11) and discarding all third order and

greater terms the expression for total change in energy reduces to:

UV = f {p, [vi R+, 2R/2) 4w, v+ (2/2R) +(w, 2 R/4))
S x

2 2

+Po [w,x R/4] + Macos (s/R) [w,x/2]

ray [u, 21van [v2+ W2/RD) =2v, w/R) + p v, v, (v, wR)]

1" "% 2 7s ’s Pt 7 x¥ 75 WiV 1y

2 2 2 2

+u3[v,x +u,s+2v,xu,s] +D] [w’xx+Psxw'xxw'ss +(kpsxw,xxw/R )] (12)
2 2 2 2,4 2

+ D2 [w'ss +(2w,sskw/R ) + (k"W /R7) + MW r o Wrge +(pxskw,xxw/R ) ]

2 2,2
+D3 [4w,xs+(v,)/R ) +(4w,xsv,)/R)]} dAs

where ay, %, %, D] , D2, and D3 are as defined in Equation (3). Several authors,
including the author of Reference (1) have proven that the ommitted terms are negligible.
The use of terms up to the second order will result in a linear differential equation.

Applying the variational principal,

_oF F ., oF ., OF ¢ .n
5F_a_yy+-a-):|8y+-a—y-"8y+...........+ayn8y, (13)

to Equation (12), the following expression for the variation in the total change in energy with

respect to the displacements u, v, and w is obtained:

BU+V) = Jy | Loy [@w/RD) = @v, /R) - (0, /R)]
S
+D, (2w, k/R) + @y w, /&) + @Pw/RY 1) 6w
+ { Maw,xcos(s/R) + (pon,)/Z) + (PaRw’x /2)} 8w,x (14)
+p W, R+v)} 6w,

2
+ {D.|[2w‘,xx+2p$xw,SS +(2 pska/R )]}8w,xx
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2
# 1D, (2w, + @how/R) +2u w, 1} 6w,
+{ D3[8w'xs+(4v’>/R)]}8w'xs

+{a] [2u,x] + a, [pxsv,s- (pxsw/R)]}Su,x

(14 Con't.)

tlag [2u, +2v, 1} 8u, + {p_[(W/R) tw, 1} 8v
+lag [2v, +2v, ]+D [2v, /R 4W, /R)]}Sv,x
+{p R+ g (2v, - (ZW/R)Jrluxsu,x I} 8v,  [dA

Equation (14) is simplified further by sefhng dA = dxds; applying the following
identity from calculus of variations, & j’; = (8 ); ond integrating between the limits
of 0 to L fordx, and 0 to 2R for ds. The fmcl form of the expression for the variation
in the total change in energy of the orthotropic cylindrical shell during the buckling
process is as follows:

L 2nR
5U+V) =4 f (20, [w/R) - (v, /R) - (u v, /2R)]

2 2 2 , 4
+2D2[(2w’ssk/R ) +( pxsw,xxk/R ) +("w/R )+w'ssss +pow ]

XS ' XXSS

- IMw, costs/R)+(Rw, /2)p_ +P ) 1-[p_(w, R+v,)]

2
sx' * xxss + (Pska’x/R )]

+4D3[2w,xxss+ (v,xxs/R)] } 6w

+2D1 [w'xxxx T
(15)
+{-2 a] [U,xx + (Psxv'xs/z) - (psxw,)/2R) ]-2 a, [U'ss +v'xs ]}18u
+{ 202[\/1 S/R)+P v, /2)]+[P (Wl _)

-203[v, ]-4D[ /2R)+(w, S/R)]}Sv dxds
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L 2
+ J(; {[PO(WISR +V) ] - 2D2[W'SSS + Fxsw'xxs +(kW,S/R )]
27R
-4D3[2w, xS + (v, )/R)]} Sw
+{2a3{u,s+ Vi ]}o Su

+{p R +2a, [v, ~w/R) + (v, /2)]}2™ 6y

+(20, lw,  +p w,  +lw/R) 6w, | ax
21R
+ { {[maw,x cos (s/R) + (Rw,x/2)(pc> +Pa) ]
2 :
_ZD][w'xxx + Moo Wioees +( “sxk Wi /R9) 1] (15 Con't.)

-4D; (2w, _+(v, /R) ]}2 Sw
+{ 20 (v, 1+ 20y [(p_v, /2) - (u w/2R)]] 6u
+{2 as [v,x +u,s ]+4D3 [(v,x/2R2) +(w,x/R)]}'o' Sv

2 L
+{ZD] [w'xx + o Wr g +(psxk w/R )]}o Sw,x ] ds

L 2R
{403[2w'xs +(v,x /R) ]}o 5w

Vii. EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS

The variation in the total change in energy of the system must vanish for any of
the arbitrary virtual displacements &u, 6v, and &dw when the system is in equilibrium. When
Equation (15) is equated to zero the integrands of the surface integral must vanish, since
the virtual displacements are arbitrary, and the following stability equilibrium equations
are obtained: ‘
Vs [ - as —(az pxs/2)] +v [po/2R] Vi [(-D3/R2) -a, ] Vi [~ a, ]

[
-

(16)
tw,  [=2D,/R] + w, [6,/2) = (ay/R)]
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v,XS[-a3-(02pxs/2)] +U'xx [-u] ] +u,ss [- a3] +w,x [02 T /2R 1=0
le [_ GZsz /2R] + VIS [(-az/R) +(-p0/2)] +VIXXS [203/R]
+w [(ay/R) + D, /RN ] +w, 1@D, u k/R) - (m_/2) cos (s/R)-(R/A)p_ + )]

2
w’ss[(2D2 k/R )-(poR/Z)] +w’xxxx[Dl] tw, [DZ]

$SSS

+w {2 M D] +403]=0

" xxss

The following natural boundary conditions are obtained from Equation (15) when
the constant term and the integrands of the line integrals vanish for any arbitrary virtual

displacement,and derivative of an arbitrary virtual displacement.

2R

[ vt 200 L =0

o

2, L
[w, + stwlss + (k pSXW/R )]O =

XX
2 21rR
[w’ss+ Ps V7 xx +hkw/R7 =0
[u, +v, ]2“R=0
s X 0

L
[2U'x * Moy ¥rs ™ (“sx w/R)L B

2nR
[P°R+232 (V'S-W/R+PXSU'X/2)]O =

L

2 _
[a3(v,x+u,s)+20 (V’x/2R +w’xs/R) ]o =0

3
(b (w, R +v) =2D. (w, + p w, _ +kw, /R
P Wi 2 Wrges T Hs™ rxxs s

~4D4w,  +v, /R ]2“R
2
[Maw,xcos (s/R) + (Rw’x/z)(Po +Pc) ) 2Dl (w'xxx + M xss + "'ska’x/R )

L _
-4Dy@w, +v, /R =0

(17)

(18)

(19)
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DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION FOR THE

STATIC CASE

The stability equilibrium equations are written in the following form:

u =ap,v ta,v +a_.v +a.w + ap .w,
’ Py 4" xx 2V 7ss T U5 rxxs T IPMrg

v, =d

u +a,u, ta,w
xs 1 'xx 37'ss 6 'x

i = + T - PR . R . \
c]u,x+ PyVrg + €OV s b4w lbp2 MaR cos{s/ )]W'xx + bp].v,ss

+b.w +b.w +b,w
17 xxxx 37 ' xxss 2 ’ssss

where:

and:

9Py T Ps%7

Py = Poig T 99

bpy =P, b5 * by

bp, = p by + Foby * bg

P} T PoS3 *tey

a, = -2 al/(sz a, +2 a3)
a,= -202/( M % +2 03)
a = -203/( M. % + 2a3)
0, = 20+ ay ROV/R(u oy + 2a;)
ag=-4Dy/R(p  ay +2a;)

ag = b, /Rl jay +2a3)

a, = 1/R( Mg %9 + 2u3)

dg = ]/(Hxs °2+2°3)

(16a)

(17a)

(18a)

(20)

(20 a)
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ag = -2a2/R( Mg Oyt 2 03)
b] = 2D]R
b2 = 2D2R
b, = 4D, Ry +8DR
b, = 2(R? ay+ k2D2)/R3
b, = K’
b6 = 4|<D2/R (20a Con't.)
b, = -R*/2
bg = 4|Jska]/R
€17 92 My
¢y = -4D3
cq = R
Cy= 2 o,
A linear differential operation is defined as follows:
Q= —a—2~ 92— + -Qi +( + 1) 84 a ﬁ— 21
TPy 2Ty T2 TN T T2 TN T T T T
By successive differentiation and combination, Equations (16a) and (17a) will have

the following form:

Qu = - [aéap]w,x+(02c16+ap2)w, +o406 +05w, ] (22a)

XXXSS

Q =- [(a]ap2+a +a (22b)

v 6) Wi xs 3PV CJ105W'xxxxs * a3a5w'xxsss ]

Operating on Equating (18a) with the differential operator defined in Equation

(21) results in the following:

+ +
Q(c]u,>< Py Vs, c2v,Y“)

=Q [b4w + bpzw,xx-MaR cos(s/R) Wi + bp]w,ss + b]w, (18b)

XXX

+bw, +b ]

w
37 "xxss 2" "ssss
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By utilizing Equations (22a) and (22b), all the v and v temms in Equation (18b)

can be eliminated. The resulting equation, an eighth order differential equation in w ,

is the required Donnell-type differential equation and is given as follows:

h80W'xxxxxxxx * h62W’xxxxxxss * h44W’xxxxssss * h26W’xxssssss

o P0g%gsssssss T [Pe0 T heeoMacos R wo e ¥ Thgp B oM cos(s/ R w,
* [h24 * hc24M<JCOS(‘::'/R)1 W xssss * hOt’)W'ssssss * hs4,qusin(s/R) W xxxs (23)
* h523MQSin(S/R) Wi xsss to h40 * hc40chos(s/R) ] W xxx * [h22 * lﬂ'c22M cos(s/R) w, XS5
tohog Wrges T MsinG/RIw, o+ Thog +h poMicost/R) T w,  +how, =0
where:

hgo = 980

he2 = dgp

hga= 944

hoe = 92

hos = o8

he6o = 960 * %60 Po " oo Fa 9

he60 = %0

hgo= dapt CugPe * Fan

ho42= 947

hos ™ doa ™ 2oPo t Foufy

ho24 = 924
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hos = 906 * 06Po

hoa1™ 941

hio3 =923

_ - 2.
h40= 940 40P T C40Po T *Fa0Pora

ho40 =940 * ®940P,

+ ef

22 Po Pa

_ - 2
hoo = dop* €29 Po * 0P,

22 "2
(24 Con't.)

ho22= €999 P, ¥ 95y

_ - 2
hoa = 904" %04 Po * €04 Po

hio1 = €99 P, + 9y

h..=e

20~ 20 Po

he20 = ©920Po * 920

and:

80 141

d62 =a,a5¢,+ b](a]a2 taja, - 1)+ a]a4b3

d a.c.+a,a.b +b3(ao +0304-1)+a]a4b2 (25)

44~ 93955 7 92937 192

d26 = 0203b3 + b2(0102 + aqa, - 1)

d =aab2

08 273

d,.=a °4b8

60 1



e(So = a]a7b] + ola4b7

fo0 = 919487

= -Ra.a

960 194

djp =956 995y T ajage, tac, +thglaja, taza, - 1) taab,

€ =a

105c3+a a,c +a]g4b5+c|3a7b] +a]a7b3+b7(a a,taa, -1)

42 17872 172 7374

f42 = b7(a]c12 + aqa, - 1)

= —R(a]oz+a a,-1)

942 3%

d a.c,ta,a.c +aab8+b6(qa ta,a, -1)

24 ~ 939554 7 9399Cy T 9993 1927 93%

e a.c, +a,a,c +b5(aa + a,0 -l)+0307b3+a]a7b-2+a

24 ~ 93953 7 939y 1927 93% 2307

f.. =a

04 = 95930,

= ~-Ra.a

924 293

o6 = 9,936

e., =d,.a b5+a

06 2% 3%7°9

94 = Aayay taga, - 1)
9,3 = 4ay93

d,.=a,a,c. +ta.a,b

40 74671 17474

€40 = 9198

ef . =a

40~ 91°7P7

940" (I/R)(«:J]c:2 + aa, - 1)

(25 Con't.)



- N S W e T Y 0 an S8 B SE W e ay =

= -Ra.a

©940 197

e

40~ 919757

d,,=a,a,c. ta.a.c, +a,c +b4(a

22 27671 17974 "6°4

e

22 7871 1793 717874

e.,=0a,a,c, ta.a.b,_+a.a_b
22 17873 17775 "3777

ef . .=a

99 = 939,07
990 = (1/R)(6a,0,)

eg22 = a3a7R

dog = 93994+ aab,

e.,=a,a.c. +a,a.c, +a,a.b

04 393 384 376

€4 = 939C +a a7b

383 375
egzl = 20307

3, = (1/RA)(~4a,a.)
21 23

=qg,a.,¢c, +a

20~ 96975 t 9y95b,

e
gy = (1/R) a0,

3
9,0~ (/R0 )

e =aq

02~ 939724

-1)ta.c

=a,c, +ta.a.c, ta.a,c, +a

653 ¥ 95970g tajasb,

(25 Con't.)
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IX. DETERMINATION OF THE CRITICAL RESULTANT END MOMENT BY USE OF THE RITZ
METHOD

The classical Ritz method solution for the static buckling of a cylindrical shell, as
shown in Reference (1), requires that an assumption be made for the shape of the buckled cy- -

linder. The following expression is assumed for the radial deflection:
w = [A] cos {s/R) +A2 cos (2s/R) +A3 cos (3s/R) +A4 cos (4s/R) +A5 cos (5s/R)
+ Aé cos (6s/R)] [ sin(muax/L)] (26)

where A] through A6 are arbitrary displacement parameters; and m is an arbitrary positive
interger representing the number of buckling modes in the axial direction. The assumed
radial deflection expression satisfies the boundary condition for the coordinates x and s.
These boundary conditions, for a simply supported shell, are zero deflection and moment at
the ends of the cylinder and a periodicity of 2n, respectively, for the x and s coordinates.

The boundary conditions represented mathematically are:
w(x,s) =w(0,s) =wl(L,s) =0 (27q)

wo s =w, (0,5 =w, (L,s)=0 (27b)

XX
for the x coordinate, and:
w(x,s) = w(x,s +2 ) (27¢)

for the s coordinate.

For convenience, Equation (26) will be written in the following summation form:

w= | An cos (ns/R) ] [ sin (mwx/L) ] (26q)

where the n, an interger, is the summing index and has the values 1 through 6.
Substitution of Equation (26a) into Equation (23) will result in a residual force

per unit area F, and Equation (23) can be written in the following form:

F= [ sin (mrx/L) ] [G]+G +G (28)

2 ¥C31l
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where
G, =MA_ B, cos (5/R) cos (ns/R)
G, =MA_ B, sin(s/R) sin (ns/R) 29)
G, =A_ By cos (ns/R)
and
By, = R [ =he oo OFR0) < by (X278 - by, (Ra/®) 4, (/R
+h gy (Xn?/RY = b 0 (/&)
By = R L= hgy (Xn/R%) = by (WFn%/R%) 4y OFn/R%) (30)

3 8 .8 62,8 44,8 26,8
3n = R Lhgg (W/RT) + hey (An"/R7) +hy g (Nn"/R7) +hy (N0 /RY)

oo
I

#hog (/R = heo O/R%) = by (X2/80) - by, (3Fn/6E)
- hog (/&) +hyg /&Y 41y, (Fn2/RY +hy, (048
= hyo OC/R) = by (07/R)

A = mqR/L

Equation (26a) can be written again with a summation notation but using a dif-

ferent index, in the following form:

w = | Ar cos (rs/R)] [sin (mwx/L)] (26b)

where the r, an interger, is the summing index and has the values 1 through 6. Equation

(26b) can now be written in the form:

wo= Go sin (mmx/L) (31)

where

G0 = Ar cos (rs/R) (32)
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The work done by the residual force, F, during the radial deflection of buckling

is obtained from the product of Equations (28) and (31) and is given as follows:

Fw = [ sin (mux/L) | (G,G, +G,G, +G Gy (33)

2

The expression for Fw must be evaluated over the surface area of the cylindrical
shell to obtain the total work W expression given as follows:

TR

2
W= S Fw ds dx (34)
0

O~

Substitution of Equation (33) into (34) will result in the following expression:

L 27R 2
w=f S [sin® (max/L)] [G G] +G G, +G G,] dsdx (35)
0 0 ) o 2 o 3

integrating Equation(35)with respect to x will give the following:

2R
W=(/2) f  [GG, +GG

; + GoG3 ] ds (36)

2

Evaluation of the integrals of the products GoGI ; G0G2, and GoG3 will give

the following:

2qR 2R
L2y G G,ds=M B, A A (L/2) S cos(s/R) cos (ns/R) cos (rs/R) ds
0 o 1 a In n'r 0
=Mo B]n An Ar (mRL/4), when r=n+]l (374q)
2R 2R
(L/2) O_/' GoGZ ds =M _ an An Ar (L/2) Of sin (s/R) (ns/R) cos (rs/R) ds
= Ma an An Ar (vRL/4), whenr=n-1; (37b)
and = --MCI an An Ar (wRL/4), when r = n+l
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2nR 2nR
(L/2) d/‘ GoG3 ds = BSn An Ar (L/2) 6/' cos (ns/R) cos (rs/R) ds
= B3n An Ar ("RL/4) when r =n (37¢)

All other combinations of r and n values not specified by the r-n condition
equations will cause the integrals to vanish. Substitution of the specified values for r and
n into Equations (37a), (37b) and (37c¢); evaluation of these equations; and separation of

terms will result in the following general expression for the total work during the buckling

due to the radial deflection:

5
W=(@RL/4)[ I An B3n +M i A An+] (B],n +Bl,n+l -B

n 2,0 782 )l

(38)

where the values of n are as specified on the summation symbols.

Equation (38) is minimized with respect to the arbitrary displacement parameters
An when n again has the interger values 1 through 6. This procedure will result in the

following system of algebraic equations:

%V_] =0: AE, +A"2"¢'§]2 = 0 (39)
%Y_: =0: Aa 5, +A, B, + A By = 0 (40)
.53% =0: _A"z"c'§32+A3 833+AT°§34 =0 @)
-a%vﬁ =0: AA;\°'§43+A4'§44+A'?°§45 =0 (42)
a_i\’.z = 0. AT°§54+A5§55 A'Z‘oﬁsé =0 (43)
%\-’-: =0: Ao Bs +A B, = 0 (44)
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where:
Bon = 2B3, n=1lté (45)
Bn,n+] =Bn+]’n = (B]'n +B],n+] - len +B2’n+]); n =1t 5

The coefficients of the An terms in Equations (39) through (44), when written

in determinate form, result in the following expression:

B” Ma B]2 0 0 0 0
MiBai By MByy O 0 0
B 0 MyByp Bz MiBy 0 0 (46)
D) = _ _ _
0 0 MBg By MBy 0
0 0 0 MBsy By M By
0 0 0 0 Ma B 65 B 66
and Equations (39) through (44) can be written in the following matrix form:
[D] Al =0 (47)

Since the arbitrary displacement parameters, An' are real; the determinani, (D), must vanish
for all values of An. Therefore, evaluation of the determinant (D), which results in a sixth
degree equation in Ma’ will give the critical resultant moment, MCl cr, of the circular cylin-
der for the particular values of Py and Po used in the evaluation of the h-constants in Equation
(24). The desired value of Mo cr is the lowest, positive, real root of the following character-

istic equation:

T+ MM+ M =0 (48)
o 1 "a a 3 a

2
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where:
T, = 1By By By3B, BByl
T, = -8, B, 8,8, B2 +8 B, B85, 52
] 11 822 B33 B44 Bog * Byy Byp By Beg Bys
+ By By Bss By By + By By Bs5 B By (49)
+ By By BssByy 5122]
T, =By By §§4 By * By By g §526 +B ) By E223§zfs
+By3 By, -3_122 Ef?é + Byg By —12 2 555 + BggByg E122 §§4
Ty = - [5122 B4 Bag

X. CONCLUSIONS

The general instability of an orthotropic circular cylinder subjected to an axial
load, end moment, and uniform radial pressure has been analyzed by a technique paralleling
the technique used by Bodner (1). The analysis has been successfully programmed, see Ap~-
pendix C, and the program has been run with arbitrary data. The results obtained with the
arbitrary data could only be visually checked and were within the range of expected results.

The program has not been used in conjunction with experimental investigations.

Xl. RECOMMENDATIONS

It is assumed that this investigation of orthotropic shells will be continued on
an experimental basis, and that the experiments will attempt to verify and/or modify the
existing analysis as well as refine and modify the computer program that has been written.
The recommendations that are stated are intended as a guide for the experimental investigators.

The deflection expression, Equation 26, should be extended to a minimum of 12 circum-
ferential deflection terms and possibly extended to 16 or 24 terms should computer capacity
allow this extension. This extension will improve the accuracy of the analysis.

The axial term of the deflection expression, the sine term, should be extended to
contain a cosine term, that is, sin (mnx/L) +cos (mmx/L) . The axial term will then

allow a variation of end conditions, which become significant in the short cylinder range
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and possibly the intermediate cylinder range. This modified axial term can also be used fo
induce deflections due to the pre~buckling stresses.

An additional term can be added to the deflection expression to account for the
initial imperfections of the cylinder.

The discarded roots of the characteristic equation should be mathematically in-
vestigated, and the meaning of the imaginary roots should be ascertained.

The sensitivity of the program should be checked for each of the dependant
variables, geometric and loading. Each modification of the program should be checked for
the possible changes in sensitivity that con be expected.

A normalization of the final program is recommended which will allow a compari-
son with other information existing in the field.

Since stability of orthotropic shells is both a general and local stability problem
the program can be extended to include the local stability problem by evaluating existing
investigations in this field.

Results obtained by other investigators can be checked with the program to deter-

mine whether or not the program is valid.
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APPENDIX A

SYMBOL TABLE
Ae - Cross-sectional area of the shell.
As - Surface area of the middle surface of the shell.
A] , A2, efc. - Arbitrary displacement parameters for the assumed deflection

expression.
a,, a,, etc. - Constants for the stability equilibrium equation defined by

l 2 E -
quation 20a.

ap,, ap,, etc. ~ Constants for the stability equilibrium equation defined by

Equation 20.
B]n' B2n' B3n - Generalized constants defined by Equation 30.

- Generalized constants for the stability determinant defined by
Equation 45. ‘

n,n’ n,ntl

b., b,, etc. - Constants for the stability equilibrium equation defined by
] - 2 E -
quation 20a.
bp] , bp2, etc. - Constants for the stability equilibrium equation defined by
Equation 20.
€ s Cor etc. - Constants for the stability equilibrium equation defined by
Equation 20a.
CPys Py etc. - Constants for the stability equilibrium equation defined by
Equation 20.
D] , D2, D3 - Bending rigidities for the axial, circumferential, and shear strains
respectively.
(D) - Stability determinant.
don, d a0 etc. - Constants for the Donnell differential equation defined by
80" "60 Equati
quation 25.
E - Modulus of elasticity for the isotropic case.
Ex' Es - Moduli of elasticity averaged over the axial and circumferential

directions, respectively.
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- Axial, circumferential, and shear strains, respectively,
occurring during the buckling process, defined by Equation 1.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Residual force per unit area remaining in the shell as a result of the
assumed deflection expression.

- Constants for the Donnell differential equation defined by
Equation 25.

- Average shear modulus, where G = E/(1 + )

- Constant defined by Equation 32.
- Constants for the residual force equation defined by Equation 29.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by Equation 25.

- Shell wall thickness.

- Shell wall thickness modified for the orthotropic case.

- Constants for the Donnell differential equation defined by
Equation 24.

- Constants for the Donnell differential equation defined by Equation 24.
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hs4] , h523' etc. - gonsfc.mfs for the Donnell differential equation defined by
quation 24,
k - Non-~dimensional integer constant.
L . - Length of cylindrical shell.
M_ - Modified end moment defined by M_= Mo/nR2
M0 - Applied end moment.
m - Number of buckling modes in the axial direction.
N ,N,N - Axial, circumferential, and shear stress resultants in the shell

just prior to buckling defined by Equation 5.

P - Modified axial load defined by P_= P_/ xR°.

Po - Applied axial load.

Py - Applied uniform radial pressure.

aR/L - Circular shell radius to length ratio.

Q - Linear differential operator defined by Equation 21.

R - Radius of circular shell.

R/h - Circular shell radius to thickness ratio.

s - Circumferential coordinate of circular shell.

To' T] , etc. - Constants for the characteristic equation defined by Equation 49.
u - Change in strain energy during buckling.

v - Axial deformation of an element of the circular shell.

\' - Change in potential energy during buckling.

Vs - Volume of circular shell wall.

v - Circumferential deformation of an element of the circular shell.
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w - Total work due to the residual force during buckling.
| w - Radial deformation of an element of the circular shell.
i, x - Axial coordinate of the circular shell.
z - Radial coordinate of the circular shell.

- Extensional stiffnesses for the axial, circumferential, and shear
strains respectively.

) - Variational symbol.

) - Coordinate angle corresponding to the circumferential coordinate,

where 8 =5s/R.
A - Constant defined by Equation 30.
H - Poison's ratio for the isotropic case.

/M - Poison's ratios from the x to s and the s to x directions,
respectively.

, C - Axial, circumferential, and shear stresses, respectively,
occurring during the buckling process.

c ,0 ,0 - Axial, circumferential, and shear stresses, respectively, in the
circular shell just prior to buckling.
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APPENDIX C

COMPUTER PROGRAM

The solution of the problem being investigated here requires that an n-th degree
polynomial in Ma be solved for the lowest, positive, real or zero root. The degree of
this polynomial, the characteristic equation of the stability determinant, Equation 48, is
equal to the maximum value used for n in the deflection expression, Equation 26a. The
applied end moment can be plus or minus and still have the same stability condition, there-
fore the characteristic equation can be considered as a polynomial in Ma2 and the roots of
the characteristic equation are determined by the cubic formula. The values of MQ are
then obtained by taking the square root of the qu value.

In the development of this problem, the total change in energy expression,
Equation 11, is manipulated by certain mathematical operations. After each manipulation
a new set of constants is obtained. These new constants are defined in terms of previously
defined constants, etc., and finally all constants are defined in terms of the extensional
stiffnesses and bending rigidities, Equation 3, and other input variables. Therefore, the
problem that the computer program must solve is an evaluation of successive sets of constants,
and the solution of the characteristic equation for the desired root. A computer program
type-out is shown in Appendix D,and this program is written in Fortran i for an IBM 1620
computer,

In the investigation of an orthotropic shell, the ayr Ay D] and D2 values,
Equation 3, are calculated for a particular orthotropic shell using heq' These values are
then rationed to the respective isotropic shell values, a and D, which are obtained by
using h values. These ratios are used as input variables in the form: Al1A, A2A, D1D,
and D2D; where A1A = a ]/a , etc. Similarly the input valuesof L and h appearin
the computer program as ratios in the form =wR/L and R/h, respectively.

In any stability problem it is necessary that the sensitivity of any or all variables
be investigated, and that a study of the output variable MQ for certain ranges of the input
variables be made. An iterative process that incruments the input variables between certain
desired limits permits these studies. All input variables can be iterated with the exception

ofE,pxs, Hox and R.
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The iterative process requires three input values for each of the following input
terms: AlA, A2A, DID, D2D, R/h, wR/L, Py Po' k and m. These values are: the
initial value, also the minimum; the maximum value; and the increment by which the input
variable varies between the initial and maximum values.

The program output is Mo Vs, Po' A sample output format is shown in Appen-
dix E. This sample output format is for arbitrary values of the input variables.

When a constant value, non-incrumented value, of an input variable is used in
a particular computer run, the initial value and maximum value must be the same, and the
incrument should be an arbitrary positive number.

An increase in the number of terms in the deflection expression will require a
change in the root solving portion of the program, since the cubic formula will no longer
provide a valid solution to the characteristic equation.

The symbols used in the computer program are self-explanatory except symbols
B11, B12, and B13 which are the b Y b2and b3 constants of Equation 20q,respectively.

A partial list of definitions and computer program symbols is given in Appendix F.

Certain constants used in the text of this paper do not appear in the computer
program. These constants have been incorporated into succeeding constants with the in-
tent of conserving computer storage.

The program must be precompiled with format, since an overload condition

exists on a 40K bit storage when the program is precompiled without format.
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APPENDIX D

COMPUTER PROGRAM TYPE-OUT

NO NN

g

100

10

222

225

15

25

223

35

45

PROGRAM FOR THE STABILITY ANALYSIS OF AN ORTHOTROPIC CIRCULAR
SHELL WITH AXIAL LOADs END MOMENTs AND RADIAL PRESSURE.

THIS PROGRAM IS WRITTEN IN FORTRAN II1 FOR AN IBM 1620 COMPUTER,
INPUT DATA (5 CARDS) - ALL DATA IN 8 DIGIT FIELDS
READ501sEsVXSeVSXsR

VALUES FOR PRESSURE AND AXIAL LOAD
READS01+APOsPOINCsPOMAX» ABGPO+BGPOI s BGPOM

INITIAL VALUES (MINIMUM)
READ501sAROHIARPLsAATIASAA2ASADIDSAD2DsAFK s AEM

INCRUMENT VALUES
READS501sROHINSRPLINSALAINSAZAINSDIDINSD2DINSEKINCSEMINC
MAXIMUM VALUES

READ501 sROHMX s RPLMX s ALAMX s AZAMX s D1DMX s D2DMX s EKMAX s EMMAX
DIMENSION V(8 UlB)9S5(6398)sB1(8)sB2(8)sB3(8)sX(6)sY(5H)
REPEATING CONSTANTS

PI1=34141593

Fl=1.

F2=2s

F3=13,

Fa=4,

PAINC=BGPOI /(PI*¥R*R)
PAMAX=BGPOM/ (P *R*%*2)
INITIALIZING STATEMENT
FK=AEK

INITIALIZING STATEMENT
EM=AEM
Utly=F1/R
DO 222 N=2+8
UIN)Y=U(]1)*%N

PO 225 TI=1+6

DO 225 J=148

D=1

S(TeJ)=Dx¥y
INITIALIZING STATEMENT
RPL=ARPL
OUTPUT STATEMENT
PUNCHS510sEsVXSsVSXsRsEKIEM
EL=R*¥PI/RPL
VI1)=FM¥PI*¥R/FL

DO 223 N=2+8
VIN)Y=V{1)#*%N

ROH=AROH
QUTPUT STATEMENT
PUNCHS124RPL
INITIALIZING STATEMENT
N2D=AD2D

OQUTPUT STATEMENT
PUNCH5154ROH
INITITALIZING STATEMENT
DIN=AD1D

INITIALIZING STATEMENT
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55

60
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A2A=AA2A

INITIALIZING STATEMENT

AlA=AA 1A

INITIALIZING STATEMENT

PO=APO

OUTPUT STATEMENT

PUNCH511sA1AsA2A4D1DsD2D

H=R/ROH

CONSTANTS FOR EQULIBRIUM EQUATIONS
AX=F1=-VXS*¥VSX
Ql=F1/(E*H*(VSX/(F2#AX)-F1/(F4*(F1~-VXS))))
A1=-F2*Q1*ALA*E*H/ (F2%*AX)

A2=A1%A2A/A1A

A3=-F2H*QI*E#*H/ (8« *(F1+VXS))

AS=-F4* (QL/RI¥EXH®*F3/(964%(F1+VXS))
A4=A3+A5/(F2%R)

A6=A2#VXS/ (-F2%R)

A7=Q1/R

A9=—-F2#A6/VXS

Bl11=F2*R*D1D*E*H%X*F3/(24«%*AX)
B12=B11*D2D/D1D

B13=E#*H¥*F3# (F2X*D]1D*VSX/AX+F1/(F1+VSX))*R/12,
B4=—-A2*R/Q1+B12*¥EK*EK/R**F 4

B5=-R#R

R6=B12*F2%EK/(R*R)

B7=—(R%¥F2)/F2

B8=B11*F2*VSX*EK/ (R*¥R)

C1=VSX®A2A*E*H/ (F2*AX)

C =—E#HERF3 /(24 % (F14+VXS))

C4=F2#C1/VXS

CONSTANTS FOR DONNELL EQUATION (EQUA. 24 AND 25)
HBO=A1*A43#811

Q2=A1*%A2+A3IRA4~-F]
H62=A1%(AS5%C2+A4%B13)+B11*%Q2

H44=A3% (AS*#C2+A2%B11)+B13*Q2+A1*A4%B12
H26=A2*A3%B13+4B12*%Q2

HO8=A2%A3%B12

E60=A1*(A7#B11+A4*B7)

HC60=—R*A1*A4
D42=A1%*(AS*CL+AI*C2+AL#BO)+ASKCL1+AE*XC2+BB*Q2
E42=A1*(AS*¥R+Q1*C2+A4%¥B5+AT*B13)+A3%A7*¥B11+B7%#Q2
HC42=~-R#Q2

D24=A3%(AS*C4+AI*C2+A2%B8B ) +B6*Q2
E24=A3%(AS¥R+Q1*¥C2+AT%#B13+A2#BT7)+B5*Q2+A1*AT*B12
HC24=-R%*A2%A3

EO6=A3%(A2%¥B5+AT*B12)

HS41=F2%0Q2

HS23=F4%A2%A73

D40=A4* (A6*CL1+A1%R4)

D22=C1* (A2%A6+A9) +C4* (A1 *AG+AL)+RB4%Q2
E22=A1*(A9*R+Q1#C4+AT*¥BH)+A6XR+Q1*C1 +A3*ATXBS
EB22=A1*(Q1*R+AT*B5)+A3*A7*B7
DO4=A3*(A9*CLU+A2%BY4)

EO4=A3% (A9*R+Q1#C4+AT*B6)
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601

227

228

270

260

261
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EBO4=A3%(Q1*R+AT#BS)

H20=PO*AT* (A6*C1+A1%B4)

OUTPUT STATEMENT

PUNCH514,4PO -

INITIALIZING STATEMENT
BIGPO=ABGPO
PA=BIGPO/(PI#R*R)

H60=A1#A4% (BB8+B7%PA)+E60%PO
H42=D42+E42%PO+BT*Q2%PA
H24=D24+E24%PO+A2%*A3*BT7%PA
HO6=A2*A3%B&+EQ6#PO
H40=D40+A1#ATXPO*® (BB8+BT7* (PO+PA))
HC40=Q2/R~R¥A1#AT*PO
H22=D22+PO*(E22+EB22#PO+A3%AT7T#BT7#PA)
HC22=A3% (AT*R#PO+6+*A2/R)
HO4=D04+PO*(EQ4+EBO4*PO)

HS21=F2#A3% (ATXPO~-F2#A2/R%%F2)
HC20=A3% (PO*AT7/R-A2/R%%F3)
HO2=A3*%AT*B84 %P0

STABILITY DETERMINANT CONSTANTS (EQUA.45)

DO 227 N=1y6
BI(N)=—HC60*V(6)*U(3)-HC42*V(4)*U(3)*S(No2)—HC24*V(2)*U(3)*S(N,4)
BLIN)=B1(N}+HC4O*V(4)*U(1)+HC22%¥V(2)*U(1)%*S(Nsy2)~HC20%*V(2)*R
B2(N)=HS21*V(2)#S(Ns1)=HS41¥V{4)#U{2)*¥S{Ns1)-HS23%V(2)%U(2)%S(Ny3)
B3(N)=HBO*V(8)*U(5)+H62¥V(6)*U(S)#S(Ns2)+HAL*V(4)#U(S5)%*S(Ns4)
B3(N)=B3(N)+H26#V(2)*U(5)%S(Ns6)+HOB*¥U(5)%S(Ns8)-HE0%V(6)*¥U(3)
B3(N)=B3(N)+H42¥V(4)#U(3) %S (N2 ) -H24#V(2)*U(3)%S(Ns4)
B3(N)=B3(N)-HO6*U(3)*S(Ns6)+HGO*V (4) /R+H22*V(2)#S(Ns2) /R
B3{N)}=B3(NJ)+HO4*S(Ns&) /R-HO2#R#*S(Ns2)—-H20%*V(2)*R
CONSTANTS FOR CHARACTERISTIC EQUATION (EQUA. 49}
X(N)=F2%B3(N)

DO 228 N=145

YIN)=(BL{N)+B1(N+1}~B2(N)+B2(N+1))%*x%2
TO=X(1)%*X(2)Y%*X(3)%X(4)*X(5)%*X(6)
Tl=z=X{1)#X{2)#(X{3)%X{4 )Y (5)+X(3)*¥X(6)#Y(4)+X(5)%X{(6)%Y(3))
T1=T1=X(4)#X{5)#X(6)*¥{(X(1)#Y(2)+X(3)*Y (1))
T2=X(1)#(Y(5)IRIX(2) %Y {(3)4X{(4)RY(2))+X(OIRY(2)%Y(4))
T2=T24+Y{1) ¥ (X(3)*(X{4)%Y(5)+X(6) %Y (4))+X(5)*#X(6)*Y(3))
T3==-Y{1)¥Y(3)#Y(5)

SOLUTION OF CHARACTERISTIC EQUATION (EQUA. 48)
Q=(F3*T1/T3-(T2/T3)%*%2 }/F3

T=(F2¥(T2/T3)%%#3 ~Q *T 1 *#T2/T3%%2 4+27,%#T0/T3)/27,
2=T**2 /F4+Qn¥%3 /27,

IF(2125052604+270
BIGA=(Z%*%#,5-T/F2)%*%(F1/F3)

BIGB=(-(Z2%%,5)-T/F2)*%(F1/F3)
EMA2=BIGA+BI1GB

IF(EMA2)390+400,4400
BIGA={~T/F2)#%{F1/F13)

EMA21=F2*BIGA
EMA22=~BIGA

IF(EMA21)26142624262
EMA2=EMA22
GO TO 400



262

250

251
258
282
259
284
280
281
252
285
253
254
255
286
257

256
400

390

391

201
202
2013
204
205
206
207
208

209
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EMA2=EMA21

GO TO 400
THETA=ATANF((-(Q*¥3 /274)~(T*%2 /F4))*%,5/(~T/F2))
Q3=F2%(~Q/F3)%%,5
EMA21=Q3#COSF(THETA/F3)
EMA22=Q3*COSF(THETA/F3+F2%P1/F3)
EMA23=Q3%COSF(THETA/F3+F4*PI/F3)
IF{EMA21)251492524252
IF(EMA22)258+2594+259
IF(EMA23)390452824282
EMA2=EMA23

GO TO 400

IF(EMA22-EMA23) 2802804284
IF(EMA23)280,281,4281
EMA2=EMA22

GO TO 400

EMA2=EMA23

GO TO 400

IF(EMA21-EMA22) 25392534285
IF{EMA22)253+92544254
EEMA2=EMA21

GO TO 255

EEMA2=EMAZ22
IF(EEMA2-EMA23) 2569256286
IF(EMA23)25692574257
EMA2=EMA23

GO TO 400

FMA2=EFMA?2

EMA=EMA2%¥ 4,5
EMO=EMA®P [ #R**F 2
PUNCH513,BIGPOsEMO

GO T0 391

PUNCH5165BIGPO

BEGIN CYCLING OF INPUT DATA
PA=PA+PAINC
BIGPO=BIGPO+BGPOI
IF(PA~PAMAX) 601496015201
PO=PO+POINC

IF(PO~POMAX) 60046004202
AlA=A1A+A1AIN
IF(A1A-A1AMX) 604605203
A2A=A2A+A2AIN

IF(A2A-A2AMX 1554555204
D1D=D1D+DIDIN
IF{DID-D1IDMX)504+504+205
D2D=D2D+D2DIN

IF(D2D~-D2DMX 1454455206
ROH=ROH+ROHIN

IF(ROH-ROHMX 13543549207
RPL=RPL+RPLIN
IF(RPL-RPLMX) 25452549208
EM=EM+EMINC

TF(EM-EMMAX) 155155209
EK=EK+EKINC



210
101
501
510
511
512
513
514
515
516

IF(EK-EKMAX) 1045105210
OUTPUT STATEMENT

PRINT 101

FORMAT ((13HLOAD NEW DATA)
FORMAT(8F840)
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FORMAT(20HE s VXSsVSX9sRADIKIM = 9EBe292F5429FB4292F541)
FORMAT(6X22HAL1/AsA2/A9D1/D9D2/D = 9F6e293F7,2)
FORMAT (2X20HPI X RAD / LENGTH = ,F643)

FORMAT(10X11HBIGPOsMO =

'E£9.253XE13,6)

FORMAT(8X11HPRESSURE = sF8.2)
FORMAT(4X18HRAD / THICKNESS = 3F9,.,2)

FORMAT(10X11HBIGPOMO =
GO TO 100
END

sE942+6X4HIMAG)



E-41

APPENDIX E

COMPUTER PROGRAM OUTPUT FORMAT

INPUT DATA FOR THE FOLLOWING OUT-PUT FORMAT

3000000043 3
15 15. 30
1200, 6o ‘ 1.
400, 2e 1.
1600, 8, le

OUT-PUT FORMAT

EsVXS9sVSX9sRADKIM =
PI X RAD / LENGTH
RAD / THICKNESS
A1/AsA2/A4D1/D
PRESSURE =
B1GPOsMO
B1GPOsMO
BI1GPOsMO
PRESSURE =
BIGPOyMO
BI1GPOyMO
BI1GPOyMO
RAD / THICKNESS
A1/AsA2/AsD1/D
PRESSURE =
BIGPOsMO
R1GPO s MO
BIGPO MO
PRESSURE =
BIGPOyMO
BI1GPOsMO
B1GPOsMO
PI X RAD 7/ LENGTH
RAD / THICKNESS
Al/AsA2/AsD1/D
PRESSURE =
B1GPOsMO
B1GPOsMO
B1GPOsMO
PRESSURE =
BI1GPOsMO
B1GPOsMO
B1GPOyMO

o ou

nonn

oo

w u n

10.
O 50004 10000,
le 1. 1o
l. 1. 1.
l. le l.
«30E+08 30 30 10,00
= 64000
= 1200,00
s D2/D = 1,00 1.00 1,00
15,00
«00E-99 44145080E+08
500E+03 4,145072E+08
1. 00E+04 4,145060E+08
30600
«00E-99 44,145147E+08
5.00E+03 4,145134E+08
1. 00E+04 4,145121E+08
= 1600400
sD2/D = 1.00 1,00 1.00
15400
«00E-99 3.108863E+08
5.00E+03 3.108854E+08
1.00E+04 3.,108838E+08
30,00
«00E-99 3.108928E+08
5«.00E+03 3,108916E+08
1.00E+04 3,108903E+08
= 80000
= 1200,00
'N2/D = 1.00 1,00 1,00
15,00
+00E-99 2344654E+08
5400E+073 2.3644708E+08
1.00E404 2¢344760E+08
30,00
5+00E+03 2.344779E+08
1,00E+04 2344833E+08

1.
1.

1.

1.0

1.0

1.00

1.00

1.00

l.
1.

l.
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RAD / THICKNESS = 1600,00
Al/A»A2/AsD1/DsD2/D = 1,00 1,00 1,00
PRESSURE = 15,00
BIGPOsMO = «00E-99 1.758522E+08
BIGPOsMO = 5,00E+03 14758575E+08
BIGPOsMO = 1,00FE+04 1,758626E+08
PRESSURE = 30.00
BIGPOsMO = «00E-99 1.758593E+08
BIGPOsMO = 5,00E+03 1.758646E+08
BIGPOsMO = 1,00E+04 1.758698E+08
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APPENDIX F
PARTIAL LIST OF DEFINITIONS
OF COMPUTER PROGRAM SYMBOLS

E Modulus of elasticity for isotropic case.
VXS Poissoin's ratio for the x to s direction.
VSX Poisson's ratio for the s to x direction.
R Radius of the shell.
AlA = q]/q ; where a = Eh/2 (1 - p <P sx)
A2A =a 2/0
_ . R
DID = D]/D ; where D Eh"/24 (1 H xspsx)

D2D = D2/D

ROH = R/h

RPL =wR/L

EK =k

EM = m

PO = P, radial pressure

BIGPO = Po axial Ioadq

PA =P = Po/nR"

EMO = Mo end moment

EMA = M /R

AATA - initial value of A1A (minimum)
AA2A - initial value of A2A (minimum)
ADID - initial valve of DID (minimum)
AD2D - initial volue of D2D (minimum)
AROH - initial value of ROH (minimum)
ARPL - initial value of RPL (minimum)
AEK - initial value of EK {minimum)



AEM
APO
ABGPO
ATAMX
A2AMX
DIDMX
D2DMX
ROHMX
RPLMX
EKMAX
EMMAX
POMAX
BGPOM
ATAIN
A2AIN
DIDIN
D2DIN
ROHIN
RPLIN
EKINC
EMINC
POINC
BGPOI
EL
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initial value of EM (minimum)

initial value of PO (minimum)

initial value of BIGPO (minimum)

final value of
final value of
final value of
final value of
final value of
final value of
final value of
final valve of
final value of
final value of
incrument of
incrument of
incrument of
incrument of
incrument of
incrument of
incrument of
incrument of
incrument of

incrument of

Length of shell
Thickness of the shell

AlA (maximum)
A2A (maximum)
DID (maximum)
D2D (maximum)
ROH (maximum)
RPL (maximum)
EK (maximum)
EM  (maximum)
PO (maximum)
BIGPO (maximum)
AlA

A2A

D1D

D2D

ROH

RPL

EK

EM

PO

BIGPO



